Comparison of Figures-of-Merit of N and P SiC Schottky Diodes with Ni Schottky Contacts at High Temperatures

2002 ◽  
Vol 41 (Part 1, No. 12) ◽  
pp. 7322-7326 ◽  
Author(s):  
M. Tarplee ◽  
V. Madangarli ◽  
T. S. Sudarshan
2010 ◽  
Vol 19 (12) ◽  
pp. 127304 ◽  
Author(s):  
Fang Lin ◽  
Bo Shen ◽  
Li-Wu Lu ◽  
Nan Ma ◽  
Fu-Jun Xu ◽  
...  

2011 ◽  
Vol 679-680 ◽  
pp. 555-558 ◽  
Author(s):  
Konstantin Vassilevski ◽  
Irina P. Nikitina ◽  
Alton B. Horsfall ◽  
Nicolas G. Wright ◽  
C. Mark Johnson

3.3 kV rated 4H-SiC diodes with nickel monosilicide Schottky contacts and 2-zone JTE regions were fabricated on commercial epitaxial wafers having a 34 m thick blocking layer with donor concentration of 2.2×1015 cm-3. The diodes were fabricated with and without additional field stop rings to investigate the impact of practically realizable stopper rings on the diode blocking characteristics. The field stop ring was formed by reactive ion etching of heavily doped epitaxial capping layer. The diodes with field stop rings demonstrated significantly higher yield and reduction of reverse leakage current. The diodes demonstrated blocking voltages in excess of 4.0 kV and very low change of leakage current at ambient temperatures up to 200 °C.


2016 ◽  
Vol 24 (04) ◽  
pp. 1750047 ◽  
Author(s):  
OSMAN KAHVECI ◽  
ABDULLAH AKKAYA ◽  
ENISE AYYILDIZ ◽  
ABDÜLMECIT TÜRÜT

We have fabricated the Ti/[Formula: see text]-type GaAs Schottky diodes (SDs) by the DC magnetron deposition and thermal evaporation, cut from the same GaAs substrates, and we have made a comparative study of the current–voltage ([Formula: see text]–[Formula: see text]) measurements of both SDs in the measurement temperature range of 160–300[Formula: see text]K with steps of 10[Formula: see text]K. The barrier height (BH) values of about 0.82 and 0.76[Formula: see text]eV at 300[Formula: see text]K have been obtained for the sputtered and evaporated SDs, respectively. It has been seen that the apparent BH value for the diodes has decreased with decreasing temperature obeying the single-Gaussian distribution (GD) for the evaporated diode and the double-GD for the sputtered diode over the whole measurement temperature range. The increment in BH and observed discrepancies in the sputtered diode have been attributed to the reduction in the native oxide layer present on the substrate surface by the high energy of the sputtered atoms and to sputtering-induced defects present in the near-surface region. We conclude that the thermal evaporation technique yields better quality Schottky contacts for use in electronic devices compared to the DC magnetron deposition technique.


2007 ◽  
Vol 91 (7) ◽  
pp. 072109 ◽  
Author(s):  
S. Huang ◽  
B. Shen ◽  
M. J. Wang ◽  
F. J. Xu ◽  
Y. Wang ◽  
...  

2005 ◽  
Vol 864 ◽  
Author(s):  
M. Li ◽  
W. A. Anderson

AbstractMetal-Semiconductor-Metal photodetectors (MSM-PD's) and simple Schottky diodes were fabricated using a low temperature (LT) technique to greatly reduce the device dark current. LT processing for metal deposition increased Schottky barrier height by improving the interface between metal and semiconductor to reduce the leakage current of the device. The structure consists of a 20 Å oxide over the active area to passivate surface states, a thicker oxide under contact pads to reduce dark current and the interdigitated Schottky contacts. A comparison was made for Schottky metal deposited with the substrate at 25 °C or -50 °C (LT). The devices fabricated using the LT process had better I-V characteristics compared to detectors fabricated using the standard room temperature (RT) metal deposition technique. The dark current for the LT film was found to be one to three orders lower in magnitude compared to the film deposited at RT. In one case, for example, the dark current was significantly reduced from 1.69 nA to 4.58 pA at 1.0 V. The active area for the device was determined to be 36 × 50 μm2 with 4 μm electrode width and 4 μm electrode spacing. Additionally, LT-MSM-PD's exhibited an excellent linear relationship between the photo-current and the incident light power. The Schottky barrier height for LT processing was found to be 0.79 eV; however, this value was 0.1 eV more than that of the same contact obtained by RT processing.


1997 ◽  
Vol 486 ◽  
Author(s):  
Chun-Xia Du ◽  
Wei-Xin Ni ◽  
Kenneth B. Joelsson ◽  
Guang-Di Shen ◽  
Göran V. Hansson

AbstractElectroluminescence (EL) of Si bulk materials has been studied using lowly doped substrate with two Al-Si Schottky contacts. By applying a forward bias on the structure, the intense light emissions at 1.094 eV due to the TO-phonon assisted recombination was obtained at 40 K while other TA- and 2TO-associated transitions were also observed. The Si-TO EL peak persists up to RT with a radiative decay of ∼ 5 μs. EL emission mechanisms of these Si Schottky diodes are discussed based on temperature dependent- and injection current-dependent EL measurements.


1992 ◽  
Vol 260 ◽  
Author(s):  
T. S. Huang ◽  
J. G. Peng ◽  
C. C. Lin

ABSTRACTThe interfacial stability, surface morphology and electrical characteristics of MoAlx contacts to n-GaAs have been investigated by using x-ray diffraction, scanning electron microscopy, sheet resistance and current-voltage measurements. The compositions of rf-cosputtered MoAlx films were x = 0.35, 2.7, and 7.0, respectively. The contacts were annealed by rapid thermal processing in the temperature range 500–1000 °C for 20 s. The interfaces of MoAl0.35/GaAs and MoAl2,7/GaAs were stable up to 900 °C, while the interfaces of MoAl7.0/GaAs were less stable and reactions occurred above 800 °C. The variations of sheet resistances and the barrier heights of the Schottky diodes as a function of annealing temperatures can be well correlated to the interfacial stability. The MoAl2.7/n-GaAs diodes exhibited the best stability and were characterized by the highest barrier height (0.98 V) and nearly unit ideality factor (1.11) after annealing at 900 °C. For all thermally stable MoAlx/n-GaAs Schottky diodes, the barrier heights increased with annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document