Silicon-Based Solar Cell Fabricated by Metal-Induced Lateral Crystallization of Amorphous Silicon Film

2006 ◽  
Vol 45 (10A) ◽  
pp. 7675-7676 ◽  
Author(s):  
Jun-Dar Hwang ◽  
Tzu-Yi Chi ◽  
Jun-Chin Liu ◽  
Chung-Yuan Kung ◽  
In-Cha Hsein
2009 ◽  
Vol 66 ◽  
pp. 147-150
Author(s):  
Wei Li ◽  
Dong Lin Xia ◽  
Ming Xia Song ◽  
Zhen Zhong Zhang ◽  
Jia Miao Ni ◽  
...  

A novel deposition way of nickel film for crystallization amorphous silicon film is introduced. Electroless nickel planting is a convenient and inexpensive way to deposit nickel without using the electric field or any large facility. A 200 nm nickel film is deposited on the glass substrates and then a 300nm a-Si film is deposited on the nickel film with a horizontal electric field assisted to enhance amorphous silicon crystallization. The bi-layer film is annealed at 500°C for several hours in the nitrogen atmosphere. The crystallized Si thin films were characterized by Raman spectroscopy, Field emission scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The Raman demonstrates that the a-Si has been crystallized. Furthermore the FE-SEM shows the lateral crystalline morphology, the length of grain is up to 5µm and the EDS reveals the nickel distribution in the MILC and MIC area.


2013 ◽  
Vol 40 (7) ◽  
pp. 0707004
Author(s):  
张超 Zhang Chao ◽  
张庆茂 Zhang Qingmao ◽  
郭亮 Guo Liang ◽  
吴煜文 Wu Yuwen ◽  
吕启涛 Lü Qitao

2005 ◽  
Vol 862 ◽  
Author(s):  
Scott J. Jones ◽  
Joachim Doehler ◽  
Tongyu Liu ◽  
David Tsu ◽  
Jeff Steele ◽  
...  

AbstractNew types of transparent conductive oxides with low indices of refraction have been developed for use in optical stacks for the amorphous silicon (a-Si) solar cell and other thin film applications. The alloys are ZnO based with Si and MgF added to reduce the index of the materials through the creation of SiO2 or MgF2, with n=1.3-1.4, or the addition of voids in the materials. Alloys with 12-14% Si or Mg have indices of refraction at λ=800nm between 1.6 and 1.7. These materials are presently being used in optical stacks to enhance light scattering by Al/multi-layer/ZnO back reflectors in a-Si based solar cells to increase light absorption in the semiconductor layers and increase open circuit currents and boost device efficiencies. In contrast to Ag/ZnO back reflectors which have long term stability issues due to electromigration of Ag, these Al based back reflectors should be stable and usable in manufactured PV products. In this manuscript, structural properties for the materials will be reported as well as the performance of solar cell devices made using these new types of materials.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


2004 ◽  
Vol 808 ◽  
Author(s):  
Rajeewa R. Arya

ABSTRACTAdvances in amorphous silicon solar cell and module development over the past two decades has led to widespread commercial application in consumer and building integrated photovoltaic applications (BIPV). The technology has taken two pathways: (i) superstrate and (ii) substrate. Both pathways have unique advantages over crystalline modules and have demonstrated promising stability and reliability with continuous improvement in performance. Multi-junction modules with amorphous and microcrystalline silicon have demonstrated initial conversion efficiencies in the range of 13%-13.5%.


2000 ◽  
Vol 609 ◽  
Author(s):  
Stefan Costea ◽  
Franco Gaspari ◽  
Tome Kosteski ◽  
Stefan Zukotynski ◽  
Nazir P. Kherani ◽  
...  

ABSTRACTThe change with time in the electrical conductivity of a hydrogenated-tritiated amorphous silicon film (a-Si:H:T) has been studied. The conductivity decreased with time after deposition. A model is developed to account for the decrease. The radioactive decay of tritium into helium produces energetic beta particles. Each β particle creates over 1500 electron-hole pairs in the film thereby increasing the conductivity of the film. The 3He atoms diffuse away leaving dangling bonds behind. We find that neutral dangling bonds (D0) are responsible for the decrease in conductivity by acting as recombination centers in the material.


2016 ◽  
Vol 36 (3) ◽  
pp. 0325001
Author(s):  
安倩 An Qian ◽  
侯金 Hou Jin ◽  
王文珍 Wang Wenzhen ◽  
杨春勇 Yang Chunyong ◽  
钟志有 Zhong Zhiyou

Sign in / Sign up

Export Citation Format

Share Document