scholarly journals Interaction between static visual cues and force-feedback on the perception of mass of virtual objects

Author(s):  
Wenyan Bi ◽  
Jonathan Newport ◽  
Bei Xiao
2018 ◽  
Author(s):  
Wenyan Bi ◽  
Jonathan Newport ◽  
Bei Xiao

ABSTRACTWe use force-feedback device and a game engine to measure the effects of material appearance on the perception of mass of virtual objects. We discover that the perceived mass is mainly determined by the ground-truth mass output by the force-feedback device. Different from the classic Material Weight Illusion (MWI), however, heavy-looking objects (e.g. steel) are consistently rated heavier than light-looking ones (e.g. fabric) with the same ground-truth mass. Analysis of the initial accelerated velocity of the movement trajectories of the virtual probe shows greater acceleration for materials with heavier rated mass. This effect is diminished when the participants lift the object for the second time, meaning that the influence of visual appearance disappears in the movement trajectories once it is calibrated by the force-feedback. We also show how the material categories are affected by both the visual appearance and the weight of the object. We conclude that visual appearance has a significant interaction with haptic force-feedback on the perception of mass and also affects the kinematics of how participants manipulate the object.CCS CONCEPTS• Human-centered computing → Empirical studies in HCI; Empirical studies in interaction design; Empirical studies in visualization;ACM Reference FormatWenyan Bi, Jonathan Newport, and Bei Xiao. 2018. Interaction between static visual cues and force-feedback on the perception of mass of virtual objects. In Proceedings of. ACM, New York, NY, USA, 5 pages.


Augmented reality (AR) is a potential area of research for education, covering issues such as tracking and calibration, and realistic rendering of virtual objects. The ability to augment real world with virtual information has opened the possibility of using AR technology in areas such as education and training as well. In the domain of computer-aided learning (CAL), researchers have long been looking into enhancing the effectiveness of the teaching and learning process by providing cues that could assist learners to better comprehend the materials presented. Although a number of works were done looking into the effectiveness of learning-aided cues, none has really addressed this issue for AR-based learning solutions. This chapter discusses the design and model of an AR based software that uses visual cues to enhance the learning process and the outcome perception results of the cues.


Author(s):  
Rasul Fesharakifard ◽  
Maryam Khalili ◽  
Laure Leroy ◽  
Alexis Paljic ◽  
Philippe Fuchs

A grasp exoskeleton actuated by a string-based platform is proposed to provide the force feedback for a user’s hand in human-scale virtual environments. The user of this interface accedes to seven active degrees of freedom in interaction with virtual objects, which comprises three degrees of translation, three degrees of rotation, and one degree of grasping. The exoskeleton has a light and ergonomic structure and provides the grasp gesture for five fingers. The actuation of the exoskeleton is performed by eight strings that are the parallel arms of the platform. Each string is connected to a block of motor, rotary encoder, and force sensor with a novel design to create the necessary force and precision for the interface. A hybrid control method based on the string’s tension measured by the force sensor is developed to resolve the ordinary problems of string-based interface. The blocks could be moved on a cubic frame around the virtual environment. Finally the results of preliminary experimentation of interface are presented to show its practical characteristics. Also the interface is mounted on an automotive model to demonstrate its industrial adaptability.


1993 ◽  
Vol 5 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Haruhisa Kawasaki ◽  
◽  
Takahiro Hayashi

This paper presents a new force feedback glove for manipulation of virtual objects. The glove is comprised of wire, link, servo motor, force sensor, and joint angle sensor of fingers. These devices are mounted to the back of glove. The object grasping sense is generated by the force feedback control of the servo motor. We show the force transmission characteristics of the glove and the experimental results of recognition of the difference in rigidity of object.


1999 ◽  
Vol 4 (1) ◽  
pp. 8-17 ◽  
Author(s):  
G Jansson ◽  
H Petrie ◽  
C Colwell ◽  
D. Kornbrot ◽  
J. Fänger ◽  
...  

This paper is a fusion of two independent studies investigating related problems concerning the use of haptic virtual environments for blind people: a study in Sweden using a PHANToM 1.5 A and one in the U.K. using an Impulse Engine 3000. In general, the use of such devices is a most interesting option to provide blind people with information about representations of the 3D world, but the restriction at each moment to only one point of contact between observer and virtual object might decrease their effectiveness. The studies investigated the perception of virtual textures, the identification of virtual objects and the perception of their size and angles. Both sighted (blindfolded in one study) and blind people served as participants. It was found (1) that the PHANToM can effectively render textures in the form of sandpapers and simple 3D geometric forms and (2) that the Impulse Engine can effectively render textures consisting of grooved surfaces, as well as 3D objects, properties of which were, however, judged with some over- or underestimation. When blind and sighted participants' performance was compared differences were found that deserves further attention. In general, the haptic devices studied have demonstrated the great potential of force feedback devices in rendering relatively simple environments, in spite of the restricted ways they allow for exploring the virtual world. The results highly motivate further studies of their effectiveness, especially in more complex contexts.


Author(s):  
Hugo I. Medellín-Castillo ◽  
Germánico González-Badillo ◽  
Eder Govea ◽  
Raquel Espinosa-Castañeda ◽  
Enrique Gallegos

The technological growth in the last years have conducted to the development of virtual reality (VR) systems able to immerse the user into a three-dimensional (3D) virtual environment where the user can interact in real time with virtual objects. This interaction is mainly based on visualizing the virtual environment and objects. However, with the recent beginning of haptic systems, the interaction with the virtual world has been extended to also feel, touch and manipulate virtual objects. Virtual reality has been successfully used in the development of applications in different scientific areas ranging from basic sciences, social science, education and entertainment. On the other hand, the use of haptics has increased in the last decade in domains from sciences and engineering to art and entertainment. Despite many developments, there is still relatively little knowledge about the confluence of software, enabling hardware, visual and haptic representations, to enable the conditions that best provide for an immersive sensory environment to convey information about a particular subject domain. In this paper, the state of the art of the research work regarding virtual reality and haptic technologies carried out by the authors in the last years is presented. The aim is to evidence the potential use of these technologies to develop usable systems for analysis and simulation in different areas of knowledge. The development of three different systems in the areas of engineering, medicine and art is presented. In the area of engineering, a system for the planning, evaluation and training of assembly and manufacturing tasks has been developed. The system, named as HAMS (Haptic Assembly and Manufacturing System), is able to simulate assembly tasks of complex components with force feedback provided by the haptic device. On the other hand, in the area of medicine, a surgical simulator for planning and training orthognathic surgeries has been developed. The system, named as VOSS (Virtual Osteotomy Simulator System), allows the realization of virtual osteotomies with force feedback. Finally, in the area of art, an interactive cinema system for blind people has been developed. The system is able to play a 3D virtual movie for the blind user to listen to and touch by means of the haptic device. The development of these applications and the results obtained from these developments are presented and discussed in this paper.


Author(s):  
Conrad Bullion ◽  
Goktug A. Dazkir ◽  
Hakan Gurocak

In this paper we present details of a finger mechanism designed as part of an ongoing research on a force feedback glove. The glove will be used in virtual reality applications where it will provide force feedback to the user as he grasps virtual objects. Haptic (touch and force) feedback is an essential component to make the simulated environment feel more realistic to the user. The design employs an innovative mechanism that wraps around each finger. Each mechanism is controlled by one cable. By controlling the tension on the cable and the displacement of the cable, we can control the amount of force applied to the user’s finger at any given position of the mechanism. The glove can provide distributed forces at the bottom surface of each finger while reducing the number of actuators and sensors. First kinematic and force analysis of the mechanism along with experimental verifications are presented. Following description of an experiment to determine grasping forces, we conclude with an overview of the next steps in this research.


2012 ◽  
Vol 21 (4) ◽  
pp. 435-451 ◽  
Author(s):  
Laura Santos-Carreras ◽  
Kaspar Leuenberger ◽  
Evren Samur ◽  
Roger Gassert ◽  
Hannes Bleuler

Robotic surgery provides many benefits such as reduced invasiveness and increased dexterity. This comes at the cost of no direct contact between surgeon and patient. This physical separation prevents surgeons from performing direct haptic exploration of tissues and organs, imposing exclusive reliance on visual cues. Current technology is not yet able to both measure and reproduce a realistic and complete sense of touch (interaction force, temperature, roughness, etc.). In this paper, we put forward a concept based on multimodal feedback consisting of the integration of different kinds of visual and tactile cues with force feedback that can potentially improve both the surgeon's performance and the patient's safety. We present a cost-effective tactile display simulating a pulsating artery that has been integrated into a haptic workstation to combine both tactile and force-feedback information. Furthermore, we investigate the effect of different feedback types, including tactile and/or visual cues, on the performance of subjects carrying out two typical palpation tasks: (1) exploring a tissue to find a hidden artery and (2) identifying the orientation of a hidden artery. The results show that adding tactile feedback significantly reduces task completion time. Moreover, for high difficulty levels, subjects perform better with the feedback condition combining tactile and visual cues. As a matter of fact, the majority of the subjects in the study preferred this combined feedback because redundant feedback reassures subjects in their actions. Based on this work, we can infer that multimodal haptic feedback improves subjects' performance and confidence during exploratory procedures.


Sign in / Sign up

Export Citation Format

Share Document