FerroTag

2021 ◽  
Vol 24 (3) ◽  
pp. 35-38
Author(s):  
Zhengxiong Li ◽  
Baicheng Chen ◽  
Kun Wang ◽  
Wenyao Xu

Inkjet printed technologies is a type of computer printing that recreates a digital design by propelling droplets of ink onto paper substrates. It is considered a transformative innovation that democratizes the paper-based product fabrication accessible by individual entrants. In recent years, novel functional inks (e.g, nanoparticles-based inks [1]) with consumer inkjet printers enable a more disruptive potential for fabricating low-cost inkable electronics, also known as inkables. Compared with traditional electronics [2], inkables are eco-compatible and easy to use. It is predicted that the market for inkable sensors will reach $4.5 billion by 2030 [3].

Author(s):  
Hagninou E. V. Donnou ◽  
Drissa Boro ◽  
Donald Abode ◽  
Brunel Capo-Chichi ◽  
Aristide B. Akpo

The design of a vertical axis wind turbine (Darrieus type) adapted to the site of Cotonou in the coastal region of Benin was investigated. The statistical study of winds based on the Weibull distribution was carried out on hourly wind data measured at 10 m above the ground by the Agency for the Safety of Air Navigation in Africa and Madagascar (ASECNA) over the period from January 1981 to December 2014. The geometrical and functional parameters of the wind turbine were determined from different models and aerodynamic approaches. The digital design and assembly of the wind turbine components were carried out using the TOPSOLID software. The designed wind turbine has a power of 200W. It is equipped with a synchronous generator with permanent magnets and has three wooden blades with NACA 0015 profile. The optimal coefficient of lift and drag were estimated respectively at 0.7832 and 0.01578. The blades are characterized by an optimum angle of attack estimated at 6.25° with a maximum fineness of 49.63. Their length is 4 m and the maximum thickness is estimated at 0.03 m with a chord of 0.20 m. The volume and mass are respectively equal to 0.024 m3 and 36 kg. The aerodynamic stall occurs at an attack angle of 14.25°. The aerodynamic force exerted on these blades is estimated to be 240 N. The aerodynamic stresses exerted on the rotor are estimated at 15 864 504 Pa and the solidity at 0.27. The efficiency of the wind turbine is 0.323. From TOPSOLID, the geometrical shape of each component of the wind turbine is represented in three dimensions. The assembly allowed to visualizing the wind turbine after export via its graphical interface. The quantity of annual energy produced by the wind turbine was estimated at 0.85 MWh. This study is the first to be carried out in the study area and could reduce the technological dependence of vertical axis wind turbines and their import for low cost energy production.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alireza Ahmadian Fard Fini ◽  
Mojtaba Maghrebi ◽  
Perry John Forsythe ◽  
Travis Steven Waller

PurposeMeasuring onsite productivity has been a substance of debate in the construction industry, mainly due to concerns about accuracy, repeatability and unbiasedness. Such characteristics are central to demonstrate construction speed that can be achieved through adopting new prefabricated systems. Existing productivity measurement methods, however, cannot cost-effectively provide solid and replicable evidence of prefabrication benefits. This research proposes a low-cost automated method for measuring onsite installation productivity of prefabricated systems.Design/methodology/approachFirstly, the captured ultra-wide footages are undistorted by extracting the curvature contours and performing a developed meta-heuristic algorithm to straighten these contours. Then a preprocessing algorithm is developed that could automatically detect and remove the noises caused by vibrations and movements. Because this study aims to accurately measure the productivity the noise free images are double checked in a specific time window to make sure that even a tiny error, which have not been detected in the previous steps, will not been amplified through the process. In the next step, the existing side view provided by the camera is converted to a top view by using a spatial transformation method. Finally, the processed images are compared with the site drawings in order to detect the construction process over time and report the measured productivity.FindingsThe developed algorithms perform nearly real-time productivity computations through exact matching of actual installation process and digital design layout. The accuracy and noninterpretive use of the proposed method is demonstrated in construction of a multistorey cross-laminated timber building.Originality/valueThis study uses footages of an already installed surveillance camera where the camera's features are unknown and then image processing algorithms are deployed to retrieve accurate installation quantities and cycle times. The algorithms are almost generalized and versatile to be adjusted to measure installation productivity of other prefabricated building systems.


2018 ◽  
Vol 85 (7-8) ◽  
pp. 504-514
Author(s):  
Christoph Beisteiner ◽  
Bernhard G. Zagar

Abstract Inkjet-printers from the company Epson and others can be used to fabricate low-cost sensors on coated PET films. By using nanoparticle-based dispersions resistive temperature dependent sensors, strain gauges, thermocouples and pressure sensors can be fabricated. For these purposes the gauge factors, Seebeck coefficients and temperature coefficients of resistance for Ag, Carbon Black and PEDOT:PSS dispersions on Mitsubishi® and Pelikan® PET substrates are characterized. Furthermore, piezoresistive effects in transverse and longitudinal strain directions are discussed. Additionally, a printed sensor system for measuring strains within a surface is presented. Finally, an injection-moulding process and a lamination process are used to improve the mechanical scratching of those sensors.


Author(s):  
Terry Knight ◽  
Lawrence Sass

AbstractThis paper introduces new research that seeks to develop low-cost, high quality, mass customizable building assembly systems that provide visually rich design variations for housing or other small structures. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular decorative design into the assembly design. Two complementary research areas are brought together in this work: shape grammars and digital fabrication. The visual, aesthetic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies, and in particular, build on recent work on monomaterial assemblies with interlocking components that can be fabricated with computer numerical control machines and assembled easily by hand. The long-term objective of this research is the development of formal, visual–physical grammars with rules that generate complete computer-assisted design/computer-assisted manufacturing data for fabrication of full-scale components for assembly design variations. This paper reports on the first phase of this research: pilot studies for prototype assembly systems that incorporate vernacular languages from different parts of the world. The results of these studies are very promising, and demonstrate a spectrum of strategies for embedding visual properties in structural systems. Important next steps in this research are outlined. If successful, this work will lead to new solutions for low-cost, easily manufactured housing, which is especially critical in developing countries and for postdisaster environments. These new housing solutions will not only provide shelter but also support important cultural values through the integration of familiar visual design features. Beyond the specific context of housing and building assemblies, the research has the potential to impact the design and manufacture of designed artifacts on many scales and in many domains, especially in domains where visual aesthetics need to be considered jointly with physical, structural, or material requirements, and where design customization and variation is important.


2020 ◽  
Author(s):  
Olivier F. C. den Ouden ◽  
Jelle D. Assink ◽  
Cornelis D. Oudshoorn ◽  
Dominique Filippi ◽  
Läslo G. Evers

Abstract. Geophysical studies and real-time monitoring of natural hazards, such as volcanic eruptions or severe weather events, benefit from the joint analysis of multiple geophysical parameters. However, typical geophysical measurement platforms still provide logging solutions for a single parameter, due to different community standards and the higher cost rate per added sensor. In this work, the infrasound-logger is presented, which has been designed as a low-cost mobile multidisciplinary measurement platform for geophysical monitoring. The platform monitors in particular infrasound, but concurrently measures barometric pressure, accelerations, wind flow and uses the Global Positioning System (GPS) for positioning of the platform. Due to its digital design, the sensor platform can readily be integrated with existing geophysical data infrastructures and be embedded in the analysis of geophysical data. The small dimensions and lower cost price per unit allow for unconventional experimental designs, for example high density spatial sampling or deployment on moving measurement platforms. Moreover, such deployments can complement existing high-fidelity geophysical sensor networks. The platform is designed using digital Micro-electromechanical Systems (MEMS) sensors that are embedded on a Printed Circuit Board (PCB). The MEMS sensors on the PCB are: a GPS, a three-component accelerometer, a barometric pressure sensor, an anemometer and a differential pressure sensor. A programmable microcontroller unit controls the sampling frequency of the sensors, and the data storage. A waterproof casing is used to protect the mobile platform against the weather. The casing is created with a stereolithography (SLA) Formlabs 3D printer, using durable resin. Thanks to a low power consumption (9 Wh over 25 days), the system can be powered by a battery or solar panel. Besides the description of the platform design, we discuss the calibration and performance of the individual sensors.


2019 ◽  
Vol 9 (2) ◽  
pp. 14 ◽  
Author(s):  
Henrik Andersson ◽  
Pavol Šuly ◽  
Göran Thungström ◽  
Magnus Engholm ◽  
Renyun Zhang ◽  
...  

Flexible electronics is a field gathering a growing interest among researchers and companies with widely varying applications, such as organic light emitting diodes, transistors as well as many different sensors. If the circuit should be portable or off-grid, the power sources available are batteries, supercapacitors or some type of power generator. Thermoelectric generators produce electrical energy by the diffusion of charge carriers in response to heat flux caused by a temperature gradient between junctions of dissimilar materials. As wearables, flexible electronics and intelligent packaging applications increase, there is a need for low-cost, recyclable and printable power sources. For such applications, printed thermoelectric generators (TEGs) are an interesting power source, which can also be combined with printable energy storage, such as supercapacitors. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), or PEDOT:PSS, is a conductive polymer that has gathered interest as a thermoelectric material. Plastic substrates are commonly used for printed electronics, but an interesting and emerging alternative is to use paper. In this article, a printed thermoelectric generator consisting of PEDOT:PSS and silver inks was printed on two common types of paper substrates, which could be used to power electronic circuits on paper.


2017 ◽  
Vol 2 (1) ◽  
pp. 014001 ◽  
Author(s):  
Andreia Araújo ◽  
Ana Pimentel ◽  
Maria João Oliveira ◽  
Manuel J Mendes ◽  
Ricardo Franco ◽  
...  

2010 ◽  
Vol 22 (36) ◽  
pp. 4059-4063 ◽  
Author(s):  
Afsal Manekkathodi ◽  
Ming-Yen Lu ◽  
Chun Wen Wang ◽  
Lih-Juann Chen

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 81 ◽  
Author(s):  
Alberto Sanchez ◽  
Angel de Castro ◽  
Maria Sofía Martínez-García ◽  
Javier Garrido

One of the main decisions when making a digital design is which arithmetic is going to be used. The arithmetic determines the hardware resources needed and the latency of every operation. This is especially important in real-time applications like HIL (Hardware-in-the-loop), where a real-time simulation of a plant—power converter, mechanical system, or any other complex system—is accomplished. While a fixed-point gets optimal implementations, using considerably fewer resources and allowing smaller simulation steps, its use is very restricted to very specific applications, as its design effort is quite high. On the other side, IEEE-754 floating-point may have resolution problems in case of the 32-bit version, and excessive hardware usage in case of the 64-bit version. This paper presents LOCOFloat, a low-cost floating-point format designed for FPGA applications. Its key features are soft normalization of the results, using significand and exponent fields in two’s complement. This paper shows the implementation of addition, subtraction and multiplication of the proposed format. Both IEEE-754 versions and LOCOFloat are compared in this paper, implementing a HIL model of a buck converter. Although the application example is a HIL simulator, other applications could take benefit from the proposed format. Results show that LOCOFloat is as accurate as 64-bit floating-point, while reducing the use of DSPs blocks by 84 % .


Sign in / Sign up

Export Citation Format

Share Document