Process Variability Analysis in Interconnect, Logic, and Arithmetic Blocks of 16-nm FinFET FPGAs

2021 ◽  
Vol 14 (3) ◽  
pp. 1-30
Author(s):  
Endri Taka ◽  
Konstantinos Maragos ◽  
George Lentaris ◽  
Dimitrios Soudris

In the current work, we study the process variability of logic, interconnect, and arithmetic/DSP resources in commercial 16-nm FPGAs. We create multiple, soft-macro sensors for each distinct resource under evaluation, and we deploy them across the FPGA fabric to measure intra-die variation, as well as across multiple FPGAs to measure inter-die variation. The derived results are used to create device-signature variability maps characterizing the distribution of variability across the die. Our study includes decoupling of variability to systematic and stochastic parts, exploration of variability under various voltage and temperature conditions and correlation analysis between the variability maps of the different resources. Furthermore, we scrutinize the impact of variability on the performance of actual test circuits and correlate the retrieved results with the sensor-based maps. Our experimental results on four Zynq XCZU7EV FPGAs showed significant intra- and inter-die variability, up to 7.8% and 8.9%, respectively, with a small increase under certain operating conditions. The correlation analysis demonstrated a strong correlation between the logic and arithmetic resources, whereas the interconnects showed a slightly weaker correlation in specific devices. Finally, a relatively moderate correlation was calculated between the variability maps and performance of test circuits due their dissimilar operating behavior versus our sensors.

2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


2021 ◽  
Vol 20 (01) ◽  
pp. 2150011
Author(s):  
Worapan Kusakunniran ◽  
Thearith Ponn ◽  
Nuttapol Boonsom ◽  
Suwimol Wahakit ◽  
Kittikhun Thongkanchorn

This paper develops the Scopus H5-Index rankings, using the field of computer science as a case study. The challenge begins with the inconsistency of conference names. The rule-based approach is invented to automatically clean up duplicate conferences and assign unique pseudo ID for each conference. This data cleansing process is applied on conference names retrieved from both Scopus and ERA/CORE, in order to share common pseudo IDs for the sake of correlation analysis. The proposed data cleansing process is validated using ERA 2010 and CORE 2018 as references and reports the very small errors of 0.6% and 0.4%, respectively. Then, the Scopus H5-Index 2006–2010 and Scopus H5-Index 2014–2018 rankings are constructed and compared with the existing ERA 2010 and CORE 2018 rankings, respectively. The results show that the correlation within the Scopus H5-Index rankings (i.e. Scopus H5-Index 2006–2010 and Scopus H5-Index 2014–2018) is at the top of the moderate correlation band, where the correlation within the ERA/CORE rankings (ERA 2010 and CORE 2018) is at the top of the strong correlation band. While the correlations across ranking systems (i.e. Scopus H5-Index 2006–2010 vs. ERA 2010, and Scopus H5-Index 2014–2018 vs. CORE 2018) are at the bottom and middle of the moderate correlation band. It can be said that the quality assessment using the Scopus H5-Index ranking is more dynamic and quickly up-to-date when compared with the ERA/CORE ranking. Also, these two ranking systems are moderately correlated with each other for both periods of 2010 and 2018.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chinedu I. Ossai

The flow of crude oil, water, and gas from the reservoirs through the wellheads results in its deterioration. This deterioration which is due to the impact of turbulence, corrosion, and erosion significantly reduces the integrity of the wellheads. Effectively managing the wellheads, therefore, requires the knowledge of the extent to which these factors contribute to its degradation. In this paper, the contribution of some operating parameters (temperature, CO2 partial pressure, flow rate, and pH) on the corrosion rate of oil and gas wellheads was studied. Field data from onshore oil and gas fields were analysed with multiple linear regression model to determine the dependency of the corrosion rate on the operating parameters. ANOVA, value test, and multiple regression coefficients were used in the statistical analysis of the results, while in previous experimental results, de Waard-Milliams models and de Waard-Lotz model were used to validate the modelled wellhead corrosion rates. The study shows that the operating parameters contribute to about 26% of the wellhead corrosion rate. The predicted corrosion models also showed a good agreement with the field data and the de Waard-Lotz models but mixed results with the experimental results and the de Waard-Milliams models.


Author(s):  
R. Friso ◽  
N. Casari ◽  
M. Pinelli ◽  
A. Suman ◽  
F. Montomoli

Abstract Gas turbines (GT) are often forced to operate in harsh environmental conditions. Therefore, the presence of particles in their flow-path is expected. With this regard, deposition is a problem that severely affects gas turbine operation. Components’ lifetime and performance can dramatically vary as a consequence of this phenomenon. Unfortunately, the operating conditions of the machine can vary in a wide range, and they cannot be treated as deterministic. Their stochastic variations greatly affect the forecasting of life and performance of the components. In this work, the main parameters considered affected by the uncertainty are the circumferential hot core location and the turbulence level at the inlet of the domain. A stochastic analysis is used to predict the degradation of a high-pressure-turbine (HPT) nozzle due to particulate ingestion. The GT’s component analyzed as a reference is the HPT nozzle of the Energy-Efficient Engine (E3). The uncertainty quantification technique used is the probabilistic collocation method (PCM). This work shows the impact of the operating conditions uncertainties on the performance and lifetime reduction due to deposition. Sobol indices are used to identify the most important parameter and its contribution to life. The present analysis enables to build confidence intervals on the deposit profile and on the residual creep-life of the vane.


2018 ◽  
Vol 24 (22) ◽  
pp. 5418-5436 ◽  
Author(s):  
Giulio Reina ◽  
Antonio Leanza ◽  
Arcangelo Messina

Surface irregularity acts as a major excitation source in off-road driving that induces vibration of the vehicle body through the tire assembly and the suspension system. When adding ground deformability, this excitation is modulated by the soil properties and operating conditions. The underlying mechanisms that govern ground behavior can be explained and modeled drawing on Terramechanics. Based on this theory, a comprehensive quarter-car model of off-road vehicle is presented that takes into account tire/soil interaction. The model can handle the general case of compliant wheel rolling on compliant ground and it allows ride and road holding performance to be evaluated in the time and frequency domain. An extensive set of simulation tests is included to assess the impact of various surface roughness and ground deformability through a parameter study, showing the potential of the proposed model to describe the behavior of off-road vehicles for design and performance optimization purposes.


Author(s):  
Erlinda D. Tibus ◽  
Sybill Krizzia G. Ledesma

<span>This study investigated the college students’ level of academic performance and determined the impact of academic stress on their English academic performance. This employed a descriptive-exploratory research design with Exploratory Factor Analysis (EFA) and correlation analysis (Pearson r) as main analyses using statistical software. The result suggested that the students (N=250) have a moderate level of stress. Likewise, seven factors were generated through EFA but were reduced to four factors using parallel analysis, the factors are perceived personal stress, classroom stress, performance stress, and time management stress. In the correlation analysis, it was found out that perceived personal stress, classroom stress, and performance stress are significantly correlated except for time management stress. Moreover, these factors were found to have no significant relationship with the English grades of the students. With this result, it is concluded that despite having a moderate level of academic stress, students were able to manage them by using a plethora of coping mechanisms available. The institutions should offer prevention and intervention services that directly address the academic stress of the students to ensure academic success.</span>


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Francesco Papi ◽  
Lorenzo Cappugi ◽  
Sebastian Perez-Becker ◽  
Alessandro Bianchini

Abstract Wind turbines operate in challenging environmental conditions. In hot and dusty climates, blades are constantly exposed to abrasive particles that, according to many field reports, cause significant damages to the leading edge. On the other hand, in cold climates similar effects can be caused by prolonged exposure to hail and rain. Quantifying the effects of airfoil deterioration on modern multi-MW wind turbines is crucial to correctly schedule maintenance and to forecast the potential impact on productivity. Analyzing the impact of damage on fatigue and extreme loading is also important to improve the reliability and longevity of wind turbines. In this work, a blade erosion model is developed and calibrated using computational fluid dynamics (CFD). The Danmarks Tekniske Universitet (DTU) 10 MW Reference Wind Turbine is selected as the case study, as it is representative of the future generation wind turbines. Lift and Drag polars are generated using the developed model and a CFD numerical setup. Power and torque coefficients are compared in idealized conditions at two wind speeds, i.e., the rated speed and one below it. Full aero-servo-elastic simulations of the turbine are conducted with the eroded polars using NREL's BEM-based code OpenFAST. Sixty-six 10-min simulations are performed for each stage of airfoil damage, reproducing operating conditions specified by the IEC 61400-1 power production DLC-group, including wind shear, yaw misalignment, and turbulence. Aeroelastic simulations are analyzed, showing maximum decreases in CP of about 12% as well as reductions in fatigue and extreme loading.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 73 ◽  
Author(s):  
Wei He ◽  
Pengkun Yu ◽  
Zhongting Hu ◽  
Song Lv ◽  
Minghui Qin ◽  
...  

Found in some specific scenarios, drinking water is hard for people to get, such as during expeditions and scientific investigations. First, a novel water generator with only two thermoelectric coolers (Model A) is designed for extracting water from atmospheric vapor and then experimentally studied under a small inlet air flow rate. The impact of operating conditions on surface temperatures of cold/hot sides and water yield are investigated, including the air flow rate and humidity. Alternately, to determine the super performance of Model A, a comparative experiment between Model A and a reference model (Model B) is carried out. The results suggest that both the cold/hot temperature and water yield in Model A increases with the humidity and air flow rate rising. Seen in comparisons of Model A and Model B, it is found that, at an air humidity of 90% and air flow rate of 30 m3/h, the total water yield was increased by 43.4% and the corresponding value reached the maximum increment of 66.7% at an air humidity of 60% and air flow rate of 30 m3/h. These features demonstrate the advantage of Model A especially in low air humidity compared to Model B.


Author(s):  
Stefano Campanari ◽  
Giulio Guandalini ◽  
Jorg Coolegem ◽  
Jan ten Have ◽  
Patrick Hayes ◽  
...  

The chlor-alkali industry produces significant amounts of hydrogen as byproduct and an interesting benefit can be obtained by feeding hydrogen to a PEM fuel cell unit, whose electricity and heat production can cover part of the chemical plant consumptions. The estimated potential of such application is up to 1100 MWel installed in the sole China, a country featuring a large presence of chlor-alkali plants. This work presents the modeling, development and first experimental results from field tests of a 2 MW PEM fuel cell power plant, built within the European project DEMCOPEM-2MW and installed in Yingkou, China as the current world’s largest PEM fuel cell installation. After a preliminary introduction to the market potential of PEM Fuel cells in the chlor-alkali industry, it is first discussed an overview of project’s MEA and fuel cell development for long life stationary applications, focusing on the design-for-manufacture process and the high-volume manufacturing route developed for the 2MW plant. The work then discusses the modeling of the power plant, including a specific lumped model predicting FC stack behavior as a function of inlet streams conditions and power set point, according to regressed polarization curves. Cells performance decay vs. lifetime reflects long-term stack test data, aiming to evidence the impact on overall energy balances and efficiency of the progression of lifetime. BOP is modeled to simulate auxiliaries consumption, pressure drops and components operating conditions. The model allows studying different operational strategies that maintain the power production during lifetime, minimizing efficiency losses; as well as to investigate the optimized operating setpoint of the plant at full load and during part-load operation. The last section of the paper discusses the experimental results, through a complete analysis of the plant performance after plant startup, including energy and mass balances and allowing to validate the model. Cumulated indicators over the first nine months of operations regarding energy production, hydrogen consumption and efficiency are also discussed.


2018 ◽  
Vol 1 (1) ◽  
pp. 129
Author(s):  
Ilona Vicenovie Oisina ◽  
Ivonne Ruth Vitamaya Osidhi

Effective medical staff-patient interpersonal com­mu­ni­cation is a central clinical function. This study was a sur­vey of 96 patients at Claudia Bagan Batu Hospital, Riau at­temp­ting to contribute the role of interpersonal communi­ca­­tion and a hospital's service quality towards patient satis­fac­tion. By utilizing correlation analysis between variables and regression to each variable, this study has found a strong correlation between variable of interpersonal com­mu­ni­cation and variable patient satisfaction (0.805) and the moderate correlation between the variable of service quality and patient satisfaction (0.639). In short, it has revealed that there has been a strong influence between interpersonal com­mu­nication and service quality at Claudia Bagan Batu Hospital on patient satisfaction (87.8%).


Sign in / Sign up

Export Citation Format

Share Document