#PrettyFlyForAWiFi

2021 ◽  
Vol 24 (4) ◽  
pp. 1-34
Author(s):  
Simon Birnbach ◽  
Richard Baker ◽  
Simon Eberz ◽  
Ivan Martinovic

Drones are becoming increasingly popular for hobbyists and recreational use. But with this surge in popularity comes increased risk to privacy as the technology makes it easy to spy on people in otherwise-private environments, such as an individual’s home. An attacker can fly a drone over fences and walls to observe the inside of a house, without having physical access. Existing drone detection systems require specialist hardware and expensive deployment efforts, making them inaccessible to the general public. In this work, we present a drone detection system that requires minimal prior configuration and uses inexpensive commercial off-the-shelf hardware to detect drones that are carrying out privacy invasion attacks. We use a model of the attack structure to derive statistical metrics for movement and proximity that are then applied to received communications between a drone and its controller. We test our system in real-world experiments with two popular consumer drone models mounting privacy invasion attacks using a range of flight patterns. We are able both to detect the presence of a drone and to identify which phase of the privacy attack was in progress while being resistant to false positives from other mobile transmitters. For line-of-sight approaches using our kurtosis-based method, we are able to detect all drones at a distance of 6 m, with the majority of approaches detected at 25 m or farther from the target window without suffering false positives for stationary or mobile non-drone transmitters.

Author(s):  
Riyad A. M. ◽  
M. S. Irfan Ahmed ◽  
R. L. Raheemaa Khan

Intrusion detection systems are used for monitoring the network data, analyze them and find the intrusions if any. The major issues with these systems are the time taken for analysis, transfer of bulk data from one part of the network to another, high false positives and adaptability to the future threats. These issues are addressed here by devising a framework for intrusion detection. Here, various types of co-operating agents are distributed in the network for monitoring, analyzing, detecting and reporting. Analysis and detection agents are the mobile agents which are the primary detection modules for detecting intrusions. Their mobility eliminates the transfer of bulk data for processing. An algorithm named territory is proposed to avoid interference of one analysis agent with another one. A communication layout of the analysis and detection module with other modules is depicted. The inter-agent communication reduces the false positives significantly. It also facilitates the identification of distributed types of attacks. The co-ordinator agents log various events and summarize the activities in its network. It also communicates with co-ordinator agents of other networks. The system is highly scalable by increasing the number of various agents if needed. Centralized processing is avoided here to evade single point of failure. We created a prototype and the experiments done gave very promising results showing the effectiveness of the system.


Author(s):  
Riyad AM

Abstract: Intrusion detection systems are the last line of defence in the network security domain. Improving the performance of intrusion detection systems always increase false positives. This is a serious problem in the field of intrusion detection. In order to overcome this issue to a great extend, we propose a multi level post processing of intrusion alerts eliminating false positives produced by various intrusion detection systems in the network. For this purpose, the alerts are normalized first. Then, a preliminary alert filtration phase prioritize the alerts and removes irrelevant alerts. The higher priority alerts are then aggregated to fewer numbers of hyper alerts. In the final phase, alert correlation is done and alert correlation graph is constructed for finding the causal relationship among the alerts which further eliminates false positives. Experiments were conducted on LLDOS 1.0 dataset for verifying the approach and measuring the accuracy. Keywords: Intrusion detection system, alert prioritization, alert aggregation, alert correlation, LLDOS 1.0 dataset, alert correlation graph.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2674
Author(s):  
Qingying Ren ◽  
Wen Zuo ◽  
Jie Xu ◽  
Leisheng Jin ◽  
Wei Li ◽  
...  

At present, the proposed microwave power detection systems cannot provide a high dynamic detection range and measurement sensitivity at the same time. Additionally, the frequency band of these detection systems cannot cover the 5G-communication frequency band. In this work, a novel microwave power detection system is proposed to measure the power of the 5G-communication frequency band. The detection system is composed of a signal receiving module, a power detection module and a data processing module. Experiments show that the detection frequency band of this system ranges from 1.4 GHz to 5.3 GHz, the dynamic measurement range is 70 dB, the minimum detection power is −68 dBm, and the sensitivity is 22.3 mV/dBm. Compared with other detection systems, the performance of this detection system in the 5G-communication frequency band is significantly improved. Therefore, this microwave power detection system has certain reference significance and application value in the microwave signal detection of 5G communication systems.


Author(s):  
Nicole Gailey ◽  
Noman Rasool

Canada and the United States have vast energy resources, supported by thousands of kilometers (miles) of pipeline infrastructure built and maintained each year. Whether the pipeline runs through remote territory or passing through local city centers, keeping commodities flowing safely is a critical part of day-to-day operation for any pipeline. Real-time leak detection systems have become a critical system that companies require in order to provide safe operations, protection of the environment and compliance with regulations. The function of a leak detection system is the ability to identify and confirm a leak event in a timely and precise manner. Flow measurement devices are a critical input into many leak detection systems and in order to ensure flow measurement accuracy, custody transfer grade liquid ultrasonic meters (as defined in API MPMS chapter 5.8) can be utilized to provide superior accuracy, performance and diagnostics. This paper presents a sample of real-time data collected from a field install base of over 245 custody transfer grade liquid ultrasonic meters currently being utilized in pipeline leak detection applications. The data helps to identify upstream instrumentation anomalies and illustrate the abilities of the utilization of diagnostics within the liquid ultrasonic meters to further improve current leak detection real time transient models (RTTM) and pipeline operational procedures. The paper discusses considerations addressed while evaluating data and understanding the importance of accuracy within the metering equipment utilized. It also elaborates on significant benefits associated with the utilization of the ultrasonic meter’s capabilities and the importance of diagnosing other pipeline issues and uncertainties outside of measurement errors.


Author(s):  
Renan Martins Baptista

This paper describes procedures developed by PETROBRAS Research & Development Center to assess a software-based leak detection system (LDS) for short pipelines. These so-called “Low Complexity Pipelines” are short pipeline segments with single-phase liquid flow. Detection solutions offered by service companies are frequently designed for large pipeline networks, with batches and multiple injections and deliveries. Such solutions are sometimes impractical for short pipelines, due to high cost, long tuning procedures, complex instrumentation and substantial computing requirements. The approach outlined here is a corporate approach that optimizes a LDS for shorter lines. The two most popular implemented techniques are the Compensated Volume Balance (CVB), and the Real Time Transient Model (RTTM). The first approach is less accurate, reliable and robust when compared to the second. However, it can be cheaper, simpler, faster to install and very effective, being marginally behind the second one, and very cost-efective. This paper describes a procedure to determine whether one can use a CVB in a short pipeline.


2018 ◽  
Vol 7 (2.4) ◽  
pp. 10
Author(s):  
V Mala ◽  
K Meena

Traditional signature based approach fails in detecting advanced malwares like stuxnet, flame, duqu etc. Signature based comparison and correlation are not up to the mark in detecting such attacks. Hence, there is crucial to detect these kinds of attacks as early as possible. In this research, a novel data mining based approach were applied to detect such attacks. The main innovation lies on Misuse signature detection systems based on supervised learning algorithm. In learning phase, labeled examples of network packets systems calls are (gave) provided, on or after which algorithm can learn about the attack which is fast and reliable to known. In order to detect advanced attacks, unsupervised learning methodologies were employed to detect the presence of zero day/ new attacks. The main objective is to review, different intruder detection methods. To study the role of Data Mining techniques used in intruder detection system. Hybrid –classification model is utilized to detect advanced attacks.


2021 ◽  
Author(s):  
Nasim Beigi Mohammadi

Smart grid is expected to improve the efficiency, reliability and economics of current energy systems. Using two-way flow of electricity and information, smart grid builds an automated, highly distributed energy delivery network. In this thesis, we present the requirements for intrusion detection systems in smart grid, neighborhood area network (NAN) in particular. We propose an intrusion detection system (IDS) that considers the constraints and requirements of the NAN. It captures the communication and computation overhead constraints as well as the lack of a central point to install the IDS. The IDS is distributed on some nodes which are powerful in terms of memory, computation and the degree of connectivity. Our IDS uses an analytical approach for detecting Wormhole attack. We simulate wireless mesh NANs in OPNET Modeler and for the first time, we integrate our analytical model in Maple from MapleSoft with our OPNET simulation model.


2020 ◽  
Vol 3 (7) ◽  
pp. 17-30
Author(s):  
Tamara Radivilova ◽  
Lyudmyla Kirichenko ◽  
Maksym Tawalbeh ◽  
Petro Zinchenko ◽  
Vitalii Bulakh

The problem of load balancing in intrusion detection systems is considered in this paper. The analysis of existing problems of load balancing and modern methods of their solution are carried out. Types of intrusion detection systems and their description are given. A description of the intrusion detection system, its location, and the functioning of its elements in the computer system are provided. Comparative analysis of load balancing methods based on packet inspection and service time calculation is performed. An analysis of the causes of load imbalance in the intrusion detection system elements and the effects of load imbalance is also presented. A model of a network intrusion detection system based on packet signature analysis is presented. This paper describes the multifractal properties of traffic. Based on the analysis of intrusion detection systems, multifractal traffic properties and load balancing problem, the method of balancing is proposed, which is based on the funcsioning of the intrusion detection system elements and analysis of multifractal properties of incoming traffic. The proposed method takes into account the time of deep packet inspection required to compare a packet with signatures, which is calculated based on the calculation of the information flow multifractality degree. Load balancing rules are generated by the estimated average time of deep packet inspection and traffic multifractal parameters. This paper presents the simulation results of the proposed load balancing method compared to the standard method. It is shown that the load balancing method proposed in this paper provides for a uniform load distribution at the intrusion detection system elements. This allows for high speed and accuracy of intrusion detection with high-quality multifractal load balancing.


2021 ◽  
Vol 17 (2) ◽  
Author(s):  
Kisron Kisron ◽  
Bima Sena Bayu Dewantara ◽  
Hary Oktavianto

In a visual-based real detection system using computer vision, the most important thing that must be considered is the computation time. In general, a detection system has a heavy algorithm that puts a strain on the performance of a computer system, especially if the computer has to handle two or more different detection processes. This paper presents an effort to improve the performance of the trash detection system and the target partner detection system of a trash bin robot with social interaction capabilities. The trash detection system uses a combination of the Haar Cascade algorithm, Histogram of Oriented Gradient (HOG) and Gray-Level Coocurrence Matrix (GLCM). Meanwhile, the target partner detection system uses a combination of Depth and Histogram of Oriented Gradient (HOG) algorithms. Robotic Operating System (ROS) is used to make each system in separate modules which aim to utilize all available computer system resources while reducing computation time. As a result, the performance obtained by using the ROS platform is a trash detection system capable of running at a speed of 7.003 fps. Meanwhile, the human target detection system is capable of running at a speed of 8,515 fps. In line with the increase in fps, the accuracy also increases to 77%, precision increases to 87,80%, recall increases to 82,75%, and F1-score increases to 85,20% in trash detection, and the human target detection system has also improved accuracy to 81%, %, precision increases to 91,46%, recall increases to 86,20%, and F1-score increases to 88,42%.


Sign in / Sign up

Export Citation Format

Share Document