Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates

2018 ◽  
Vol 87 (1) ◽  
pp. 921-964 ◽  
Author(s):  
David L. Brautigan ◽  
Shirish Shenolikar

Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling “clouds” that orchestrate and coordinate different aspects of cell physiology.

2016 ◽  
Author(s):  
Eelco Tromer ◽  
Debora Bade ◽  
Berend Snel ◽  
Geert J.P.L. Kops

AbstractThe spindle assembly checkpoint (SAC) maintains genomic integrity by preventing progression of mitotic cell division until all chromosomes are stably attached to spindle microtubules. The SAC critically relies on the paralogs Bub1 and BubR1/Mad3, which integrate kinetochore-spindle attachment status with generation of the anaphase inhibitory complex MCC. We previously reported on the widespread occurrences of independent gene duplications of an ancestral ‘MadBub’ gene in eukaryotic evolution and the striking parallel subfunctionalization that lead to loss of kinase function in BubR1/Mad3-like paralogs. We now present an elaborate subfunctionalization analysis that includes all known motifs in Bub1 and BubR1, and show that ancestral features are consistently retained in the same functional paralog: GLEBS/CDI/CDII/kinase in the Bub1-like and KEN1/KEN2/D-Box in the BubR1/Mad3-like. The recently described ABBA motif can be found in either or both paralogs. We however discovered two additional ABBA motifs that flank KEN2. This cassette of ABBA1-KEN2-ABBA2 forms a strictly conserved module in all ancestral and BubR1/Mad3-like proteins, suggestive of a specific and crucial SAC function. Indeed, deletion of the ABBA motifs in human BUBR1 abrogates the SAC and affects APC/C-Cdc20 interactions. Our detailed comparative genomics analyses thus enabled discovery of a conserved cassette of motifs essential for the SAC and shows how this approach can be used to uncover hitherto unrecognized functional protein features.


2021 ◽  
Author(s):  
Mariano Martin ◽  
Carlos Pablo Modenutti ◽  
Juan Pablo Nicola ◽  
Marcelo Adrian Marti

Short linear motifs (SLiMs) are key to cell physiology mediating reversible protein-protein interactions. Precise identification of SLiMs remains a challenge, being the main drawback of most bioinformatic prediction tools their low specificity (high number of false positives). An important, usually overlooked, aspect is the relation between SLiMs mutations and disease. The presence of variants in each residue position can be used to assess the relevance of the corresponding residue(s) for protein function, and its (in)tolerance to change. In the present work, we combined sequence variant information and structural analysis of the energetic impact of single amino acid substitution (SAS) in SLiM-Receptor complex structure, and showed that it significantly improves prediction of true functional SLiMs. Our strategy is based on building a SAS tolerance matrix that shows, for each position, whether one of the possible 19 SAS is tolerated or not. Herein we present the MotSASi strategy and analyze in detail 4 SLiMs involved in intracellular protein trafficking. Our results show that inclusion of variant and sequence information significantly improves both prediction of true SLiMs and rejection of false positives, while also allowing better classification of variants inside SLiMs, a results with a direct impact in clinical genomics.


Author(s):  
Lumin Wei ◽  
Rongjing Zhang ◽  
Jinzhao Zhang ◽  
Juanjuan Li ◽  
Deping Kong ◽  
...  

AbstractProtein kinase A (PKA) plays an important role in regulating inflammation via its catalytic subunits. Recently, PKA regulatory subunits have been reported to directly modulate some signaling pathways and alleviate inflammation. However, the role of PKA regulatory subunits in colonic inflammation remains unclear. Therefore, we conducted this study to investigate the role of the PKA regulatory subunit PRKAR2A in colitis. We observed that PRKAR2A deficiency protected mice from dextran sulfate sodium (DSS)-induced experimental colitis. Our experiments revealed that the intestinal epithelial cell-specific deletion of Prkar2a contributed to this protection. Mechanistically, the loss of PRKAR2A in Prkar2a−/− mice resulted in an increased IFN-stimulated gene (ISG) expression and altered gut microbiota. Inhibition of ISGs partially reversed the protective effects against DSS-induced colitis in Prkar2a−/− mice. Antibiotic treatment and cross-fostering experiments demonstrated that the protection against DSS-induced colitis in Prkar2a−/− mice was largely dependent on the gut microflora. Altogether, our work demonstrates a previously unidentified function of PRKAR2A in promoting DSS-induced colitis.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 290
Author(s):  
Caterina Peggion ◽  
Fiorella Tonello

Snake venom phospholipases A2 (PLA2s) have sequences and structures very similar to those of mammalian group I and II secretory PLA2s, but they possess many toxic properties, ranging from the inhibition of coagulation to the blockage of nerve transmission, and the induction of muscle necrosis. The biological properties of these proteins are not only due to their enzymatic activity, but also to protein–protein interactions which are still unidentified. Here, we compare sequence alignments of snake venom and mammalian PLA2s, grouped according to their structure and biological activity, looking for differences that can justify their different behavior. This bioinformatics analysis has evidenced three distinct regions, two central and one C-terminal, having amino acid compositions that distinguish the different categories of PLA2s. In these regions, we identified short linear motifs (SLiMs), peptide modules involved in protein–protein interactions, conserved in mammalian and not in snake venom PLA2s, or vice versa. The different content in the SLiMs of snake venom with respect to mammalian PLA2s may result in the formation of protein membrane complexes having a toxic activity, or in the formation of complexes whose activity cannot be blocked due to the lack of switches in the toxic PLA2s, as the motif recognized by the prolyl isomerase Pin1.


2021 ◽  
Author(s):  
Victoria L. Jeter ◽  
Jorge C. Escalante-Semerena

Posttranslational modifications are mechanisms for rapid control of protein function used by cells from all domains of life. Acetylation of the epsilon amino group ( N ε ) of an active-site lysine of the AMP-forming acetyl-CoA synthetase (Acs) enzyme is the paradigm for the posttranslational control of the activity of metabolic enzymes. In bacteria, the alluded active-site lysine of Acs enzymes can be modified by a number of different GCN5-type N -acetyltransferases (GNATs). Acs activity is lost as a result of acetylation, and restored by deacetylation. Using a heterologous host, we show that Campylobacter jejuni NCTC11168 synthesizes enzymes that control Acs function by reversible lysine acetylation (RLA). This work validates the function of gene products encoded by the cj1537c , cj1715, and cj1050c loci, namely the AMP-forming acetate:CoA ligase ( Cj Acs), a type IV GCN5-type lysine acetyltransferase (GNAT, hereafter Cj LatA), and a NAD + -dependent (class III) sirtuin deacylase ( Cj CobB), respectively. To our knowledge, these are the first in vivo and in vitro data on C. jejuni enzymes that control the activity of Cj Acs. IMPORTANCE This work is important because it provides the experimental evidence needed to support the assignment of function to three key enzymes, two of which control the reversible posttranslational modification of an active-site lysyl residue of the central metabolic enzyme acetyl-CoA synthetase ( Cj Acs). We can now generate Campylobacter jejuni mutant strains defective in these functions, so we can establish the conditions in which this mode of regulation of Cj Acs is triggered in this bacterium. Such knowledge may provide new therapeutic strategies for the control of this pathogen.


2003 ◽  
Vol 14 (11) ◽  
pp. 4342-4351 ◽  
Author(s):  
Huamin Wang ◽  
Xiaodong Wang ◽  
Yu Jiang

In Saccharomyces cerevisiae, Pph21 and Pph22 are the two catalytic subunits of type 2A phosphatase (PP2Ac), and Sit4 is a major form of 2A-like phosphatase. The function of these phosphatases requires their association with different regulatory subunits. In addition to the conventional regulatory subunits, namely, the A and B subunits for Pph21/22 and the Sap proteins for Sit4, these phosphatases have been found to associate with a protein termed Tap42. In this study, we demonstrated that Sit4 and PP2Ac interact with Tap42 via an N-terminal domain that is conserved in all type 2A and 2A-like phosphatases. We found that the Sit4 phosphatase in the sit4-102 strain contains a reverse-of-charge amino acid substitution within its Tap42 binding domain and is defective for formation of the Tap42-Sit4 complex. Our results suggest that the interaction with Tap42 is required for the activity as well as for the essential function of Sit4 and PP2Ac. In addition, we showed that Tap42 is able to interact with two other 2A-like phosphatases, Pph3 and Ppg1.


2020 ◽  
Vol 38 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Peter Hraber ◽  
Paul E. O’Maille ◽  
Andrew Silberfarb ◽  
Katie Davis-Anderson ◽  
Nicholas Generous ◽  
...  

2019 ◽  
Author(s):  
Debasish Kumar Ghosh ◽  
Ajit Roy ◽  
Akash Ranjan

ABSTRACTSelective autophagy of protein aggregates is necessary for maintaining the cellular proteostasis. Several regulatory proteins play critical roles in this process. Here, we report that the huntingtin interacting protein K (HYPK) modulates the autophagic degradation of poly-neddylated huntingtin exon1 aggregates. HYPK functions as a scaffolding protein that binds to the Nedd8 and LC3 proteins. The C-terminal ubiquitin-associated (UBA) domain of HYPK binds to the Nedd8, whereas an N-terminal tyrosine-type (Y-type) LC3 interacting region (LIR) of HYPK binds to the LC3. Several conserved amino acids in the UBA domain of HYPK are necessary to mediate the efficient binding of HYPK to Nedd8. The autophagy inducing properties of HYPK are manifested by the increased lipidation of LC3 protein, increased expression of beclin-1 and ATG-5 proteins, and generation of puncta-like granules of LC3 in the HYPK overexpressing cells. Association of the ‘H-granules’ of HYPK with the poly-neddylated huntingtin exon1 aggregates results in the formation of autophagosome around the huntingtin exon1 aggregates, thereby clearing the aggregates by aggrephagy. Poly-neddylation of huntingtin exon1 is required for its autophagic degradation by HYPK. Thus, overexpression of Nedd8 also increases the basal level of cellular autophagy, other than maintaining the autophagy flux. The poly-neddylation dependent autophagic clearance of huntingtin exon1 by HYPK leads to better cell physiology and survival. Taken together, our study describes a novel mechanism of HYPK mediated autophagy of poly-neddylated huntingtin exon1 aggregates.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Manon Baëza ◽  
Séverine Viala ◽  
Marjorie Heim ◽  
Amélie Dard ◽  
Bruno Hudry ◽  
...  

Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development.


Sign in / Sign up

Export Citation Format

Share Document