scholarly journals Understanding Hydrophobic Effects: Insights from Water Density Fluctuations

Author(s):  
Nicholas B. Rego ◽  
Amish J. Patel

The aversion of hydrophobic solutes for water drives diverse interactions and assemblies across materials science, biology, and beyond. Here, we review the theoretical, computational, and experimental developments that underpin a contemporary understanding of hydrophobic effects. We discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn, explain why hydrophobic interactions become stronger upon increasing temperature. We also illustrate the sensitive dependence of surface hydrophobicity on the chemical and topographical patterns the surface displays, which makes the use of approximate approaches for estimating hydrophobicity particularly challenging. Importantly, the hydrophobicity of complex surfaces, such as those of proteins, which display nanoscale heterogeneity, can nevertheless be characterized using interfacial water density fluctuations; such a characterization also informs protein regions that mediate their interactions. Finally, we build upon an understanding of hydrophobic hydration and the ability to characterize hydrophobicity to inform the context-dependent thermodynamic forces that drive hydrophobic interactions and the desolvation barriers that impede them. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Elayne M. Thomas ◽  
Phong H. Nguyen ◽  
Seamus D. Jones ◽  
Michael L. Chabinyc ◽  
Rachel A. Segalman

Polymers that simultaneously transport electrons and ions are paramount to drive the technological advances necessary for next-generation electrochemical devices, including energy storage devices and bioelectronics. However, efforts to describe the motion of ions or electrons separately within polymeric systems become inaccurate when both species are present. Herein, we highlight the basic transport equations necessary to rationalize mixed transport and the multiscale materials properties that influence their transport coefficients. Potential figures of merit that enable a suitable performance benchmark in mixed conducting systems independent of end application are discussed. Practical design and implementation of mixed conducting polymers require an understanding of the evolving nature of structure and transport with ionic and electronic carrier density to capture the dynamic disorder inherent in polymeric materials. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Brenden W. Hamilton ◽  
Michael N. Sakano ◽  
Chunyu Li ◽  
Alejandro Strachan

Shock loading takes materials from ambient conditions to extreme conditions of temperature and nonhydrostatic stress on picosecond timescales. In molecular materials the fast loading results in temporary nonequilibrium conditions with overheated low-frequency modes and relatively cold, high-frequency, intramolecular modes; coupling the shock front with the material's microstructure and defects results in energy localization in hot spots. These processes can conspire to lead to a material response not observed under quasi-static loads. This review focuses on chemical reactions induced by dynamical loading, the understanding of which requires bringing together materials science, shock physics, and condensed matter chemistry. Recent progress in experiments and simulations holds the key to the answer of long-standing grand challenges with implications for the initiation of detonation and life on Earth. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Boris Kozinsky ◽  
David J. Singh

The performance of thermoelectric materials is determined by their electrical and thermal transport properties that are very sensitive to small modifications of composition and microstructure. Discovery and design of next-generation materials are starting to be accelerated by computational guidance. We review progress and challenges in the development of accurate and efficient first-principles methods for computing transport coefficients and illustrate approaches for both rapid materials screening and focused optimization. Particularly important and challenging are computations of electron and phonon scattering rates that enter the Boltzmann transport equations, and this is where there are many opportunities for improving computational methods. We highlight the first successful examples of computation-driven discoveries of high-performance materials and discuss avenues for tightening the interaction between theoretical and experimental materials discovery and optimization. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Daniel B. Miracle ◽  
Mu Li ◽  
Zhaohan Zhang ◽  
Rohan Mishra ◽  
Katharine M. Flores

Structural materials have lagged behind other classes in the use of combinatorial and high-throughput (CHT) methods for rapid screening and alloy development. The dual complexities of composition and microstructure are responsible for this, along with the need to produce bulk-like, defect-free materials libraries. This review evaluates recent progress in CHT evaluations for structural materials. High-throughput computations can augment or replace experiments and accelerate data analysis. New synthesis methods, including additive manufacturing, can rapidly produce composition gradients or arrays of discrete alloys-on-demand in bulk form, and new experimental methods have been validated for nearly all essential structural materials properties. The remaining gaps are CHT measurement of bulk tensile strength, ductility, and melting temperature and production of microstructural libraries. A search strategy designed for structural materials gains efficiency by performing two layers of evaluations before addressing microstructure, and this review closes with a future vision of the autonomous, closed-loop CHT exploration of structural materials. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Albert A. Voskanyan ◽  
Alexandra Navrotsky

A renaissance of interest in crystallographic shear structures and our recent work in this remarkable class of materials inspired this review. We first summarize the geometrical aspects of shear plane formation and possible transformations in ReO3, rutile, and perovskite-based structures. Then we provide a mechanistic overview of crystallographic shear formation, plane ordering, and propagation. Next we describe the energetics of planar defect formation and interaction, equilibria between point and extended defect structures, and thermodynamic stability of shear compounds. Finally, we emphasize the remaining challenges and propose future directions in this exciting area. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Lucy Clark ◽  
Aly H. Abdeldaim

Quantum spin liquids are unique quantum states of matter predicted to arise in low-dimensional, frustrated, and quantum magnetic systems. Compared with conventional ferromagnetic and antiferromagnetic states, quantum spin liquids are expected to display a variety of novel and exotic properties, making their realization in materials a highly appealing prospect. While an unambiguous realization of this long-sought-after state remains elusive, a growing number of materials candidates show promise in revealing the properties of quantum spin liquids. In this review, we present some of the key challenges and current opportunities in the synthesis, characterization, and understanding of quantum spin liquids from the perspective of the broad and interdisciplinary field of materials research. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Katherine T. Faber ◽  
Francesca Casadio ◽  
Admir Masic ◽  
Luc Robbiola ◽  
Marc Walton

Cultural heritage materials, ranging from archaeological objects and sites to fine arts collections, are often characterized through their life cycle. In this review, the fundamentals and tools of materials science are used to explore such life cycles—first, via the origins of the materials and methods used to produce objects of function and artistry, and in some cases, examples of exceptional durability. The findings provide a window on our cultural heritage. Further, they inspire the design of sustainable materials for future generations. Also explored in this review are alteration phenomena over intervals as long as millennia or as brief as decades. Understanding the chemical processes that give rise to corrosion, passivation, or other degradation in chemical and physical properties can provide the foundation for conservation treatments. Finally, examples of characterization techniques that have been invented or enhanced to afford studies of cultural heritage materials, often nondestructively, are highlighted. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Franziska Schmidt ◽  
Peter Hosemann ◽  
Raluca O. Scarlat ◽  
Daniel K. Schreiber ◽  
John R. Scully ◽  
...  

The next generation of nuclear reactors will expose materials to conditions that, in some cases, are even more extreme than those in current fission reactors, inevitably leading to new materials science challenges. Radiation-induced damage and corrosion are two key phenomena that must be understood both independently and synergistically, but their interactions are often convoluted. In the light water reactor community, a tremendous amount of work has been done to illuminate irradiation-corrosion effects, and similar efforts are under way for heavy liquid metal and molten salt environments. While certain effects, such as radiolysis and irradiation-assisted stress corrosion cracking, are reasonably well established, the basic science of how irradiation-induced defects in the base material and the corrosion layer influence the corrosion process still presents many unanswered questions. In this review, we summarize the work that has been done to understand these coupled extremes, highlight the complex nature of this problem, and identify key knowledge gaps. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Chiara Chiatti ◽  
Claudia Fabiani ◽  
Anna Laura Pisello

In recent decades, research on persistent luminescence has led to new phosphors and promising performance. Efforts to improve the quality of phosphors’ afterglow have paved the way toward innovative solutions for many disciplines. However, there are few examples of the implementation of luminescent materials. In addition to providing a general background on persistent luminescence, the techniques used for its analysis, and its multidisciplinary potential in energy and environmental science, this article aims to explain the existing gap between the physical-chemical approach and the effective implementation of luminescent materials in larger-scale applications. It investigates engineering solutions in terms of the possible benefits of luminescence in lighting energy savings and passive cooling of urban surfaces. Finally, this article aims to reduce the abovementioned gap by suggesting what is most needed for the successful application of luminescent materials in the built environment. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document