Glucosinolates in Brassica Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake

Author(s):  
Xianli Wu ◽  
Hui Huang ◽  
Holly Childs ◽  
Yanbei Wu ◽  
Liangli Yu ◽  
...  

Glucosinolates (GSLs) are a class of sulfur-containing compounds found predominantly in the genus Brassica of the Brassicaceae family. Certain edible plants in Brassica, known as Brassica vegetables, are among the most commonly consumed vegetables in the world. Over the last three decades, mounting evidence has suggested an inverse association between consumption of Brassica vegetables and the risk of various types of cancer. The biological activities of Brassica vegetables have been largely attributed to the hydrolytic products of GSLs. GSLs can be hydrolyzed by enzymes; thermal or chemical degradation also breaks down GSLs. There is considerable variation of GSLs in Brassica spp., which are caused by genetic and environmental factors. Most Brassica vegetables are consumed after cooking; common cooking methods have a complex influence on the levels of GSLs. The variation of GSLs in Brassica vegetables and the influence of cooking and processing methods ultimately affect their intake and health-promoting properties. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 257 ◽  
Author(s):  
Nieves Baenas ◽  
Javier Marhuenda ◽  
Cristina García-Viguera ◽  
Pilar Zafrilla ◽  
Diego Moreno

Brassica vegetables are of great interest due to their antioxidant and anti-inflammatory activity, being responsible for the glucosinolates (GLS) and their hydroxylated derivatives, the isothiocyanates (ITC). Nevertheless, these compounds are quite unstable when these vegetables are cooked. In order to study this fact, the influence of several common domestic cooking practices on the degradation of GLS and ITC in two novel Brassica spp.: broccolini (Brassica oleracea var italica Group x alboglabra Group) and kale (Brassica oleracea var. sabellica L.) was determined. On one hand, results showed that both varieties were rich in health-promoter compounds, broccolini being a good source of glucoraphanin and sulforaphane (≈79 and 2.5 mg 100 g−1 fresh weight (F.W.), respectively), and kale rich in glucoiberin and iberin (≈12 and 0.8 mg 100 g−1 F.W., respectively). On the other hand, regarding cooking treatments, stir-frying and steaming were suitable techniques to preserve GLS and ITC (≥50% of the uncooked samples), while boiling was deleterious for the retention of these bioactive compounds (20–40% of the uncooked samples). Accordingly, the appropriate cooking method should be considered an important factor to preserve the health-promoting effects in these trending Brassica.


Author(s):  
Szu-Ying Chen ◽  
Ons Mamäi ◽  
Rosemary J. Akhurst

Discovered over four decades ago, transforming growth factor β (TGFβ) is a potent pleiotropic cytokine that has context-dependent effects on most cell types. It acts as a tumor suppressor in some cancers and/or supports tumor progression and metastasis through its effects on the tumor stroma and immune microenvironment. In TGFβ-responsive tumors it can promote invasion and metastasis through epithelial-mesenchymal transformation, the appearance of cancer stem cell features, and resistance to many drug classes, including checkpoint blockade immunotherapies. Here we consider the biological activities of TGFβ action on different cells of relevance toward improving immunotherapy outcomes for patients, with a focus on the adaptive immune system. We discuss recent advances in the development of drugs that target the TGFβ signaling pathway in a tumor-specific or cell type–specific manner to improve the therapeutic window between response rates and adverse effects. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Antonio J. Meléndez-Martínez ◽  
Volker Böhm ◽  
Grethe Iren Andersen Borge ◽  
M. Pilar Cano ◽  
Martina Fikselová ◽  
...  

Carotenoids are versatile isoprenoids that are important in food quality and health promotion. There is a need to establish recommended dietary intakes/nutritional reference values for carotenoids. Research on carotenoids in agro-food and health is being propelled by the two multidisciplinary international networks, the Ibero-American Network for the Study of Carotenoids as Functional Foods Ingredients (IBERCAROT; http://www.cyted.org ) and the European Network to Advance Carotenoid Research and Applications in Agro-Food and Health (EUROCAROTEN; http://www.eurocaroten.eu ). In this review, considerations for their safe and sustainable use in products mostly intended for health promotion are provided. Specifically, information about sources, intakes, and factors affecting bioavailability is summarized. Furthermore, their health-promoting actions and importance in public health in relation to the contribution of reducing the risk of diverse ailments are synthesized. Definitions and regulatory and safety information for carotenoid-containing products are provided. Lastly, recent trends in research in the context of sustainable healthy diets are summarized. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Richard E. Lloyd ◽  
Manasi Tamhankar ◽  
Åke Lernmark

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2908
Author(s):  
Omobolanle O. Oloyede ◽  
Carol Wagstaff ◽  
Lisa Methven

Glucosinolate hydrolysis products are responsible for the health-promoting properties of Brassica vegetables. The impact of domestic cooking on the myrosinase stability, glucosinolates and hydrolysis products in 18 cabbage accession was investigated. Cabbages were steamed, microwaved, and stir-fried before analysis. Cooking significantly affected myrosinase stability and glucosinolate concentrations within and between cabbage morphotypes. Myrosinase was most stable after stir-frying, with up to 65% residual activity. Steaming and microwaving resulted in over 90% loss of myrosinase activity in some accessions. Stir-frying resulted in the greatest decrease in glucosinolate concentration, resulting in up to 70% loss. Steamed cabbages retained the highest glucosinolates after cooking (up to 97%). The profile and abundance of glucosinolate hydrolysis products detected varied across all cooking methods studied. Cooking reduced the amounts of nitriles and epithionitriles formed compared to raw samples. Steaming led to a significant increase in the concentration of beneficial isothiocyanates present in the cabbage and a significantly lower level of nitriles compared to other samples. Microwaving led to a reduction in the concentrations of both nitriles and isothiocyanates when compared to other cooking methods and raw cabbage. The results obtained help provide information on the optimal cooking methods for cabbage, suggesting that steaming may be the best approach to maximising beneficial isothiocyanate production.


Author(s):  
Sofía Rodríguez Murúa ◽  
Mauricio F. Farez ◽  
Francisco J. Quintana

Multiple sclerosis (MS) is a chronic autoimmune, inflammatory, and neurodegenerative disease that affects the central nervous system (CNS). MS is characterized by immune dysregulation, which results in the infiltration of the CNS by immune cells, triggering demyelination, axonal damage, and neurodegeneration. Although the exact causes of MS are not fully understood, genetic and environmental factors are thought to control MS onset and progression. In this article, we review the main immunological mechanisms involved in MS pathogenesis. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
S.M. Khaledur Rahman ◽  
Toru Uyama ◽  
Zahir Hussain ◽  
Natsuo Ueda

The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid–containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Haruka Tomishima ◽  
Kathleen Luo ◽  
Alyson E. Mitchell

Almonds ( Prunus dulcis) are one of the most consumed tree-nuts worldwide, with commercial production in arid environments such as California, Spain, and Australia. The high consumption of almonds is partly due to their versatile usage in products such as gluten-free flour and dairy alternatives as well as them being a source of protein in vegetarian diets. They contain high concentrations of health-promoting compounds such as Vitamin E and have demonstrated benefits for reducing the risk of cardiovascular disease and improving vascular health. In addition, almonds are the least allergenic tree nut and contain minute quantities of cyanogenic glycosides. Production has increased significantly in the past two decades with 3.12 billion pounds of kernel meat produced in California alone in 2020 (USDA 2021), leading to a new emphasis on the valorization of the coproducts (e.g., hulls, shells, skins, and blanch water). This article presents a review of the chemical composition of almond kernels (e.g., macro and micronutrients, phenolic compounds, cyanogenic glycosides, and allergens) and the current research exploring the valorization of almond coproducts. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2017 ◽  
Vol 8 (3) ◽  
pp. 907-914 ◽  
Author(s):  
Julia Zhu ◽  
Katherine Z. Sanidad ◽  
Elvira Sukamtoh ◽  
Guodong Zhang

Substantial pre-clinical and human studies have shown that curcumin, a dietary compound from turmeric, has a variety of health-promoting biological activities.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 883
Author(s):  
Mebeaselassie Andargie ◽  
Maria Vinas ◽  
Anna Rathgeb ◽  
Evelyn Möller ◽  
Petr Karlovsky

Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.


Sign in / Sign up

Export Citation Format

Share Document