Assembly and Dynamics of the Bacterial Flagellum

2020 ◽  
Vol 74 (1) ◽  
pp. 181-200 ◽  
Author(s):  
Judith P. Armitage ◽  
Richard M. Berry

The bacterial flagellar motor is the most complex structure in the bacterial cell, driving the ion-driven rotation of the helical flagellum. The ordered expression of the regulon and the assembly of the series of interacting protein rings, spanning the inner and outer membranes to form the ∼45–50-nm protein complex, have made investigation of the structure and mechanism a major challenge since its recognition as a rotating nanomachine about 40 years ago. Painstaking molecular genetics, biochemistry, and electron microscopy revealed a tiny electric motor spinning in the bacterial membrane. Over the last decade, new single-molecule and in vivo biophysical methods have allowed investigation of the stability of this and other large protein complexes, working in their natural environment inside live cells. This has revealed that in the bacterial flagellar motor, protein molecules in both the rotor and stator exchange with freely circulating pools of spares on a timescale of minutes, even while motors are continuously rotating. This constant exchange has allowed the evolution of modified components allowing bacteria to keep swimming as the viscosity or the ion composition of the outside environment changes.

2021 ◽  
Vol 203 (9) ◽  
Author(s):  
Hiroyuki Terashima ◽  
Seiji Kojima ◽  
Michio Homma

ABSTRACT The bacterial flagellum is the motility organelle powered by a rotary motor. The rotor and stator elements of the motor are located in the cytoplasmic membrane and cytoplasm. The stator units assemble around the rotor, and an ion flux (typically H+ or Na+) conducted through a channel of the stator induces conformational changes that generate rotor torque. Electrostatic interactions between the stator protein PomA in Vibrio (MotA in Escherichia coli) and the rotor protein FliG have been shown by genetic analyses but have not been demonstrated biochemically. Here, we used site-directed photo-cross-linking and disulfide cross-linking to provide direct evidence for the interaction. We introduced a UV-reactive amino acid, p-benzoyl-l-phenylalanine (pBPA), into the cytoplasmic region of PomA or the C-terminal region of FliG in intact cells. After UV irradiation, pBPA inserted at a number of positions in PomA and formed a cross-link with FliG. PomA residue K89 gave the highest yield of cross-links, suggesting that it is the PomA residue nearest to FliG. UV-induced cross-linking stopped motor rotation, and the isolated hook-basal body contained the cross-linked products. pBPA inserted to replace residue R281 or D288 in FliG formed cross-links with the Escherichia coli stator protein, MotA. A cysteine residue introduced in place of PomA K89 formed disulfide cross-links with cysteine inserted in place of FliG residues R281 and D288 and some other flanking positions. These results provide the first demonstration of direct physical interaction between specific residues in FliG and PomA/MotA. IMPORTANCE The bacterial flagellum is a unique organelle that functions as a rotary motor. The interaction between the stator and rotor is indispensable for stator assembly into the motor and the generation of motor torque. However, the interface of the stator-rotor interaction has only been defined by mutational analysis. Here, we detected the stator-rotor interaction using site-directed photo-cross-linking and disulfide cross-linking approaches. We identified several residues in the PomA stator, especially K89, that are in close proximity to the rotor. Moreover, we identified several pairs of stator and rotor residues that interact. This study directly demonstrates the nature of the stator-rotor interaction and suggests how stator units assemble around the rotor and generate torque in the bacterial flagellar motor.


2017 ◽  
Author(s):  
M Heo ◽  
AL Nord ◽  
D Chamousset ◽  
E van Rijn ◽  
HJE Beaumont ◽  
...  

AbstractFluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects. Such insight, however, is still lacking for many applications of fluorescent fusions. This is particularly relevant in the study of the internal dynamics of motor protein complexes, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to thestatorof the bacterial flagellar motor (BFM) complex have previously been used to successfully unveil the internal subunit dynamics of the motor. Here we report the effects of three different fluorescent proteins fused to the stator, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry in the complex remained unaffected. MotB fusions decreased the rotation-direction switching frequency of single motors and induced a novel BFM behavior: a bias-dependent asymmetry in the speed attained in the two rotation directions. All these effects could be mitigated by the insertion of a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions on BFM dynamics and their alleviation—new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.Author summaryMuch of what is known about the biology of proteins was discovered by fusing them to fluorescent proteins that allow detection of their location. But the label comes at a cost: the presence of the tag can alter the behavior of the protein of interest in unforeseen, yet biologically relevant ways. These side effects limit the depth to which fluorescent proteins can be used to probe protein function. One of the systems that has been successfully studied with fluorescent fusions for which these effects have not been addressed are dynamic protein complexes that carry out mechanical work. We examined how fluorescent proteins fused to a component of the bacterial flagellar motor complex impacts its function. Our findings show that the fusion proteins altered biologically relevant dynamical properties of the motor, including induction of a novel mechanical behavior, and demonstrate an approach to alleviate this. These results advance our ability to dissect the bacterial flagellar motor, and the internal dynamics of protein complexes in general, with fluorescent fusion proteins while causing minimal perturbation.


2008 ◽  
Vol 41 (2) ◽  
pp. 103-132 ◽  
Author(s):  
Yoshiyuki Sowa ◽  
Richard M. Berry

AbstractThe bacterial flagellar motor is a reversible rotary nano-machine, about 45 nm in diameter, embedded in the bacterial cell envelope. It is powered by the flux of H+or Na+ions across the cytoplasmic membrane driven by an electrochemical gradient, the proton-motive force or the sodium-motive force. Each motor rotates a helical filament at several hundreds of revolutions per second (hertz). In many species, the motor switches direction stochastically, with the switching rates controlled by a network of sensory and signalling proteins. The bacterial flagellar motor was confirmed as a rotary motor in the early 1970s, the first direct observation of the function of a single molecular motor. However, because of the large size and complexity of the motor, much remains to be discovered, in particular, the structural details of the torque-generating mechanism. This review outlines what has been learned about the structure and function of the motor using a combination of genetics, single-molecule and biophysical techniques, with a focus on recent results and single-molecule techniques.


2016 ◽  
Vol 216 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Enrico Monachino ◽  
Lisanne M. Spenkelink ◽  
Antoine M. van Oijen

Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.


Nanophotonics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 81-92 ◽  
Author(s):  
J. Michael Gruber ◽  
Pavel Malý ◽  
Tjaart P.J. Krüger ◽  
Rienk van Grondelle

AbstractThe conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10–20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.


2010 ◽  
Vol 299 (6) ◽  
pp. F1462-F1472 ◽  
Author(s):  
Nourdine Faresse ◽  
Dorothée Ruffieux-Daidie ◽  
Mélanie Salamin ◽  
Celso E. Gomez-Sanchez ◽  
Olivier Staub

The mineralocorticoid receptor (MR) plays a crucial role in the regulation of Na+ balance and blood pressure, as evidenced by gain of function mutations in the MR of hypertensive families. In the kidney, aldosterone binds to the MR, induces its nuclear translocation, and promotes a transcriptional program leading to increased transepithelial Na+ transport via the epithelial Na+ channel. In the unliganded state, MR is localized in the cytosol and part of a multiprotein complex, including heat shock protein 90 (Hsp90), which keeps it ligand-binding competent. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin antibiotic that binds to Hsp90 and alters its function. We investigated whether 17-AAG affects the stability and transcriptional activity of MR and consequently Na+ reabsorption by renal cells. 17-AAG treatment lead to reduction of MR protein level in epithelial cells in vitro and in vivo, thereby interfering with aldosterone-dependent transcription. Moreover, 17-AAG inhibited aldosterone-induced Na+ transport, possibly by interfering with MR availability for the ligand. Finally, we identified the ubiquitin-protein ligase, COOH terminus of Hsp70-interacting protein, as a novel partner of the cytosolic MR, which is responsible for its polyubiquitylation and proteasomal degradation in presence of 17-AAG. In conclusion, 17-AAG may represent a novel pharmacological tool to interfere with Na+ reabsorption and hypertension.


2021 ◽  
Author(s):  
Pierre Aldag ◽  
Fabian Welzel ◽  
Leonhard Jakob ◽  
Andreas Schmidbauer ◽  
Marius Rutkauskas ◽  
...  

CRISPR-Cas9 is a ribonucleoprotein complex that sequence-specifically binds and cleaves double-stranded DNA. Wildtype Cas9 as well as its nickase and cleavage-incompetent mutants have been used in various biological techniques due to their versatility and programmable specificity. Cas9 has been shown to bind very stably to DNA even after cleavage of the individual DNA strands, inhibiting further turnovers and considerably slowing down in-vivo repair processes. This poses an obstacle in genome editing applications. Here, we employed single-molecule magnetic tweezers to investigate the binding stability of different S. pyogenes Cas9 variants after cleavage by challenging them with supercoiling. We find that different release mechanisms occur depending on which DNA strand is cleaved. After non-target strand cleavage, supercoils are immediately but slowly released by swiveling of the non-target strand around the DNA with friction. Consequently, Cas9 and its non-target strand nicking mutant stay stably bound to the DNA for many hours even at elevated torsional stress. After target-strand cleavage, supercoils are only removed after the collapse of the R-loop. We identified several states with different stabilities of the R-loop. Most importantly, we find that the post-cleavage state of Cas9 exhibits a higher stability compared to the pre-cleavage state. This suggests that Cas9 has evolved to remain tightly bound to its cut target.


2006 ◽  
Vol 393 (3) ◽  
pp. 789-795 ◽  
Author(s):  
Andrii Domanskyi ◽  
Katja T. Virtanen ◽  
Jorma J. Palvimo ◽  
Olli A. Jänne

ARIP4 [AR (androgen receptor)-interacting protein 4] is a member of the SNF2-like family of proteins. Its sequence similarity to known proteins is restricted to the centrally located SNF2 ATPase domain. ARIP4 is an active ATPase, and dsDNA (double-stranded DNA) and ssDNA (single-stranded DNA) enhance its catalytic activity. We show in the present study that ARIP4 interacts with AR and binds to DNA and mononucleosomes. The N-terminal region of ARIP4 mediates interaction with AR. Kinetic parameters of the ARIP4 ATPase are similar to those of BRG-1 and SNF2h, two members of the SNF2-like protein family, but the specific activity of ARIP4 protein purified to >90% homogeneity is approximately ten times lower, being 120 molecules of ATP hydrolysed by an ARIP4 molecule per min in contrast with approx. 1000 ATP molecules hydrolysed per min by ATP-dependent chromatin remodellers. Unlike other members of the SNF2 family, ARIP4 does not appear to form large protein complexes in vivo or remodel mononucleosomes in vitro. ARIP4 is covalently modified by sumoylation, and mutation of six potential SUMO (small ubiquitin-related modifier) attachment sites abolished the ability of ARIP4 to bind DNA, hydrolyse ATP and activate AR function. We conclude that, similar to its closest homologues in the SNF2-like protein family, ATRX (α-thalassemia, mental retardation, X-linked) and Rad54, ARIP4 does not seem to be a classical chromatin remodelling protein.


Sign in / Sign up

Export Citation Format

Share Document