(Invited) Microstructure Development in Epitaxially Grown In Situ Boron and Carbon Co-Doped Strained 60% Silicon-Germanium Layers

2013 ◽  
Vol 50 (9) ◽  
pp. 1013-1024 ◽  
Author(s):  
A. Reznicek ◽  
T. N. Adam ◽  
J. Li ◽  
Z. Zhu ◽  
R. Murphy ◽  
...  
2021 ◽  
Author(s):  
Xiao-Hang Yang ◽  
Chi Cao ◽  
Zilong Guo ◽  
Xiaoyu Zhang ◽  
Yaxin Wang ◽  
...  

Indium and phosphorus co-doped g-C3N4 photocatalyst (In,P-g-C3N4) was prepared by K2HPO4 post-treatment of indium doped g-C3N4 photocatalyst (In-g-C3N4) derived from in-situ copolymerization of dicyandiamide and indium chloride. The experimental results...


Author(s):  
Zhuang-Hao Zheng ◽  
Jun-Yun Niu ◽  
Dong-Wei Ao ◽  
Bushra Jabar ◽  
Xiao-Lei Shi ◽  
...  

2002 ◽  
Vol 729 ◽  
Author(s):  
Roger T. Howe ◽  
Tsu-Jae King

AbstractThis paper describes recent research on LPCVD processes for the fabrication of high-quality micro-mechanical structures on foundry CMOS wafers. In order to avoid damaging CMOS electronics with either aluminum or copper metallization, the MEMS process temperatures should be limited to a maximum of 450°C. This constraint rules out the conventional polycrystalline silicon (poly-Si) as a candidate structural material for post-CMOS integrated MEMS. Polycrystalline silicon-germanium (poly-SiGe) alloys are attractive for modular integration of MEMS with electronics, because they can be deposited at much lower temperatures than poly-Si films, yet have excellent mechanical properties. In particular, in-situ doped p-type poly-SiGe films deposit rapidly at low temperatures and have adequate conductivity without post-deposition annealing. Poly-Ge can be etched very selectively to Si, SiGe, SiO2 and Si3N4 in a heated hydrogen peroxide solution, and can therefore be used as a sacrificial material to eliminate the need to protect the CMOS electronics during the MEMS-release etch. Low-resistance contact between a structural poly-SiGe layer and an underlying CMOS metal interconnect can be accomplished by deposition of the SiGe onto a typical barrier metal exposed in contact windows. We conclude with directions for further research to develop poly-SiGe technology for integrated inertial, optical, and RF MEMS applications.


NANO ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. 1850119
Author(s):  
Xiaoyan Li ◽  
Yunlong Yu ◽  
Xiangfeng Guan ◽  
Peihui Luo ◽  
Linqin Jiang ◽  
...  

Eu[Formula: see text]/Tb[Formula: see text] co-doped nanocomposite containing CeO2 nanocrystals was successfully prepared by an in situ sol–gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of CeO2 nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of CeO2 content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.


2016 ◽  
Vol 8 (9) ◽  
pp. e308-e308 ◽  
Author(s):  
Hai-xia Zhong ◽  
Kai Li ◽  
Qi Zhang ◽  
Jun Wang ◽  
Fan-lu Meng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document