Combined Surface-Activated Bonding (SAB) Technologies for New Approach to Low Temperature Wafer Bonding

2014 ◽  
Vol 64 (5) ◽  
pp. 83-93
Author(s):  
R. He ◽  
M. Fujino ◽  
A. Yamauchi ◽  
T. Suga
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chongshan Yin ◽  
Qicheng Liu ◽  
Qing Liu

Abstract How to convert heat energy into other forms of usable energy more efficiently is always crucial for our human society. In traditional heat engines, such as the steam engine and the internal combustion engine, high-grade heat energy can be easily converted into mechanical energy, while a large amount of low-grade heat energy is usually wasted owing to its disadvantage in the temperature level. In this work, for the first time, the generation of mechanical energy from both high- and low-temperature steam is implemented by a hydrophilic polymer membrane. When exposed to water vapor with a temperature ranging from 50 to 100 °C, the membrane repeats rolling from one side to another. In nature, this continuously rolling of membrane is powered by the steam, like a miniaturized “steam engine”. The differential concentration of water vapor (steam) on the two sides of the membrane generates the asymmetric swelling, the curve, and the rolling of the membrane. In particular, results suggest that this membrane based “steam engine” can be powered by the steam with a relatively very low temperature of 50 °C, which indicates a new approach to make use of both the high- and low-temperature heat energy.


2016 ◽  
Vol 75 (9) ◽  
pp. 345-353 ◽  
Author(s):  
F. Kurz ◽  
T. Plach ◽  
J. Suss ◽  
T. Wagenleitner ◽  
D. Zinner ◽  
...  

2000 ◽  
Vol 36 (7) ◽  
pp. 677 ◽  
Author(s):  
M. Alexe ◽  
V. Dragoi ◽  
M. Reiche ◽  
U. Gösele

2015 ◽  
Vol 107 (26) ◽  
pp. 261107 ◽  
Author(s):  
Zihao Wang ◽  
Ruizhe Yao ◽  
Stefan F. Preble ◽  
Chi-Sen Lee ◽  
Luke F. Lester ◽  
...  

2019 ◽  
Vol 16 (8) ◽  
pp. 499-506 ◽  
Author(s):  
Martin Rabold ◽  
Holger Kuster ◽  
Peter Woias ◽  
Frank Goldschmidtboeing

1997 ◽  
Vol 36 (Part 2, No. 5A) ◽  
pp. L527-L528 ◽  
Author(s):  
Robert W. Bower ◽  
Frank Y.-J. Chin

Author(s):  
J. Wei ◽  
S. S. Deng ◽  
C. M. Tan

Silicon-to-silicon wafer bonding by sol-gel intermediate layer has been performed using acid-catalyzed tetraethylthosilicate-ethanol-water sol solution. High bond strength near to the fracture strength of bulk silicon is obtained at low temperature, for example 100°C. However, The bond efficiency and bond strength of this intermediate layer bonding sharply decrease when the bonding temperature increases to elevated temperature, such as 300 °C. The degradation of bond quality is found to be related to the decomposition of residual organic species at elevated bonding temperature. The bubble generation and the mechanism of the high bond strength at low temperature are exploited.


Sign in / Sign up

Export Citation Format

Share Document