scholarly journals Behaviour of TiB2-Coating on Graphitized Carbon Cathodes During Laboratory Aluminium Electrolysis

2004 ◽  
Vol 2004-24 (1) ◽  
pp. 181-193
Author(s):  
Thinh Nguyen
Author(s):  
Akira Tanaka ◽  
David F. Harling

In the previous paper, the author reported on a technique for preparing vapor-deposited single crystal films as high resolution standards for electron microscopy. The present paper is intended to describe the preparation of several high resolution standards for dark field microscopy and also to mention some results obtained from these studies. Three preparations were used initially: 1.) Graphitized carbon black, 2.) Epitaxially grown particles of different metals prepared by vapor deposition, and 3.) Particles grown epitaxially on the edge of micro-holes formed in a gold single crystal film.The authors successfully obtained dark field micrographs demonstrating the 3.4Å lattice spacing of graphitized carbon black and the Au single crystal (111) lattice of 2.35Å. The latter spacing is especially suitable for dark field imaging because of its preparation, as in 3.), above. After the deposited film of Au (001) orientation is prepared at 400°C the substrate temperature is raised, resulting in the formation of many square micro-holes caused by partial evaporation of the Au film.


Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1417
Author(s):  
Min Zhuang ◽  
Wen Shi ◽  
Hui Wang ◽  
Liqiang Cui ◽  
Guixiang Quan ◽  
...  

The reactivity of nanoscale zero-valent iron is limited by surface passivation and particle agglomeration. Here, Ni/Fe bimetallic nanoparticles embedded into graphitized carbon (NiFe@GC) were prepared from Ni/Fe bimetallic complex through a carbothermal reduction treatment. The Ni/Fe nanoparticles were uniformly distributed in the GC matrix with controllable particle sizes, and NiFe@GC exhibited a larger specific surface area than unsupported nanoscale zero-valent iron/nickel (FeNi NPs). The XRD results revealed that Ni/Fe bimetallic nanoparticles embedded into graphitized carbon were protected from oxidization. The NiFe@GC performed excellently in 2,4,6-trichlorophenol (TCP) removal from an aqueous solution. The removal efficiency of TCP for NiFe@GC-50 was more than twice that of FeNi nanoparticles, and the removal efficiency of TCP increased from 78.5% to 94.1% when the Ni/Fe molar ratio increased from 0 to 50%. The removal efficiency of TCP by NiFe@GC-50 can maintain 76.8% after 10 days of aging, much higher than that of FeNi NPs (29.6%). The higher performance of NiFe@GC should be ascribed to the significant synergistic effect of the combination of NiFe bimetallic nanoparticles and GC. In the presence of Ni, atomic H* generated by zero-valent iron corrosion can accelerate TCP removal. The GC coated on the surface of Ni/Fe bimetallic nanoparticles can protect them from oxidation and deactivation.


Author(s):  
Wenhao Sun ◽  
Yi-Chun Lu ◽  
Yaqin Huang

Lithium-sulfur (Li-S) batteries promise high theoretical specific energy density (2600 Wh kg-1), low cost and eco-friendliness. However, their practical development is limited by the shuttle of lithium polysulfides (LiPSs) and...


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 10699-10710
Author(s):  
Linsheng Chen ◽  
Yongming Wu ◽  
Yingbo Liu ◽  
Tiansong Liu ◽  
Xiaojing Sheng

Sign in / Sign up

Export Citation Format

Share Document