(Keynote) Machine Learning and High-Speed Circuitry in Thin Film Transistors for Sensor Interfacing in Hybrid Large-Area Electronic Systems

2019 ◽  
Vol 92 (4) ◽  
pp. 121-134
Author(s):  
James Sturm ◽  
Yoni Mehlman ◽  
Levent E. Aygun ◽  
Can Wu ◽  
Z Zheng ◽  
...  

1992 ◽  
Vol 258 ◽  
Author(s):  
Richard L. Weisfield

ABSTRACTThe use of large area hydrogenated amorphous silicon (a-Si:H) technology has enabled compact, full page width scanners to be built inexpensively, and is now the dominant method for fabricating low-end facsimile machines. This technology has now been extended to scanners with considerably higher levels of performance. High speed, high resolution, full-width input scanning arrays have been developed using a-Si:H photodiodes and thin-film transistors (TFTs). A 12” long array has been designed to scan 3 colors at 400 spots per inch, and operates at speeds of up to 40 pages per minute, achieving a signal/noise ratio of 400:1 at intensities of 30 μWcm-2.The color scan array is made using 3 rows of a-Si:H photodiodes, one per color, addressed by TFTs which share sets of common data lines. The data lines are arranged in a low capacitance non-crossing configuration which allows the scanner to achieve high responsivity with low crosstalk. The data lines are connected to a number of readout chips, each of which amplifies and multiplexes the photosignals onto a single video output line. Optoelectronic test results and images obtained from this device will be presented. These results indicate that high quality color images can be obtained from a-Si:H scanners, and that the present scanner is more limited by the speed of the readout chips than by the a-Si: H devices themselves.


2016 ◽  
Vol 16 (4) ◽  
pp. 3659-3663
Author(s):  
H Yu ◽  
L Zhang ◽  
X. H Li ◽  
H. Y Xu ◽  
Y. C Liu

The amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) were demonstrated based on a double-layer channel structure, where the channel is composed of an ultrathin nitrogenated a-IGZO (a-IGZO:N) layer and an undoped a-IGZO layer. The double-layer channel device showed higher saturation mobility and lower threshold-voltage shift (5.74 cm2/Vs, 2.6 V) compared to its single-layer counterpart (0.17 cm2/Vs, 7.23 V). The improvement can be attributed to three aspects: (1) improved carrier transport properties of the channel by the a-IGZO:N layer with high carrier mobility and the a-IGZO layer with high carrier concentration, (2) reduced interfacial trap density between the active channel and the gate insulator, and (3) higher surface flatness of the double-layer channel. Our study reveals key insights into double-layer channel, involving selecting more suitable electrical property for back-channel layer and more suitable interface modification for active layer. Meanwhile, room temperature fabrication amorphous TFTs offer certain advantages on better flexibility and higher uniformity over a large area.


2006 ◽  
Vol 100 (1) ◽  
pp. 013708 ◽  
Author(s):  
Hao-Chih Yuan ◽  
Zhenqiang Ma ◽  
Michelle M. Roberts ◽  
Donald E. Savage ◽  
Max G. Lagally

Nano Research ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 4356-4367 ◽  
Author(s):  
Guodong Dong ◽  
Jie Zhao ◽  
Lijun Shen ◽  
Jiye Xia ◽  
Hu Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document