scholarly journals (ECS 236th) Pulsed Electrodeposition of Carbon Dioxide Reduction Electrocatalysts for Space Applications

2020 ◽  
Author(s):  
Brian Skinn ◽  
Sujat Sen ◽  
McLain Leonard ◽  
DAN WANG ◽  
Fikile R. Brushett ◽  
...  

Space programs around the globe have begun to consider the logistical demands of missions beyond the orbital neighborhood of Earth. Unlike local installations such as the International Space Station, long-range missions will not have the option to resupply critical materials from Earth. Thus, the development of capabilities for what is often termed “In-Situ Resource Utilization” (ISRU) have been a continuing focus of research through NASA and other agencies. One particular long-range mission of interest is to place human astronauts on Mars; the major component of the thin Martian atmosphere is carbon dioxide, making CO2 a natural input to ISRU technologies for production of carbon-containing materials. Production of mission consumables from in-situ Mars resources will be critical to enabling human exploration of Mars, in part by minimizing the number and size of descent/ascent vehicles. Potential ISRU products from CO2 include that seem likely to provide significant mission benefits with minimal infrastructure required are propellants (e.g., hydrocarbons), fuel cell reactants (e.g., formic acid, methanol, carbon monoxide), and life support consumables (e.g., oxygen). The first portion of this talk will comprise a high-level overview of the chemical transformations that can be imparted to CO2 via electrocatalysis on gas-diffusion electrodes (GDEs), in the form of a summary of literature reports on the catalytic performance of a wide variety of single-metallic and metal-alloy systems. The remainder will encompass an exposition of the electrocatalytic performance of tin and copper single-metal GDE electrocatalysts prepared by pulsed electrodeposition. These metals are well known for their ability to reduce carbon dioxide to formic acid and hydrocarbons/carbon monoxide, respectively, and are under active development in numerous academic research groups and industrial entities to this end. These experimental results clearly demonstrate the power and flexibility of the pulse/pulse-reverse electrodeposition approach to catalyst fabrication, as evidenced by the appreciable effects of the pulsed-waveform electrodeposition parameters on CO2 electroreduction product distribution and total current density.

2020 ◽  
Vol 11 (21) ◽  
pp. 5503-5510 ◽  
Author(s):  
Ahmed Mouchfiq ◽  
Tanya K. Todorova ◽  
Subal Dey ◽  
Marc Fontecave ◽  
Victor Mougel

A bimetallic Mo–Cu complex inspired by the active site of the carbon monoxide dehydrogenase enzyme mediates the electroreduction of carbon dioxide to formic acid.


1930 ◽  
Vol 3 (3) ◽  
pp. 241-251 ◽  
Author(s):  
J. C. McLennan F.R.S. ◽  
J. V. S. Glass B.A.

This paper deals with the action of cathode rays on gases and gas mixtures. Methane, methane-oxygen mixtures, carbon monoxide and carbon monoxide-oxygen mixtures were examined. Methane gave small percentages of hydrogen and ethane. Methane and oxygen mixtures gave as gaseous products, carbon monoxide, carbon dioxide and hydrogen, the only other products being water and formic acid. The relative proportions of the products do not vary widely under a wide variation of conditions.The reaction was found to be of the first order with respect to pressure. The reaction rate increases linearly with the voltage up to a certain value, after which it becomes nearly independent of the voltage.The action of cathode rays on carbon monoxide produces carbon dioxide and a solid brown suboxide which is extremely soluble in water, and its composition corresponds to a formula (C3O)n. If the carbon monoxide is moist, no visible amount of solid or liquid is found and there is less carbon dioxide.Carbon monoxide-oxygen mixtures under the action of cathode rays form carbon dioxide. Presence of water vapor has a retarding effect on the reaction. For mixtures of the same composition the reaction rate is proportional to the total pressure. For dry mixtures the product increases with the carbon monoxide present; when moist it is much less, and independent of the carbon monoxide.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 636 ◽  
Author(s):  
Giane B. Damas ◽  
Caetano R. Miranda ◽  
Ricardo Sgarbi ◽  
James M. Portela ◽  
Mariana R. Camilo ◽  
...  

The electrochemical reduction of carbon dioxide into carbon monoxide, hydrocarbons and formic acid has offered an interesting alternative for a sustainable energy scenario. In this context, Sn-based electrodes have attracted a great deal of attention because they present low price and toxicity, as well as high faradaic efficiency (FE) for formic acid (or formate) production at relatively low overpotentials. In this work, we investigate the role of tin oxide surfaces on Sn-based electrodes for carbon dioxide reduction into formate by means of experimental and theoretical methods. Cyclic voltammetry measurements of Sn-based electrodes, with different initial degree of oxidation, result in similar onset potentials for the CO2 reduction to formate, ca. −0.8 to −0.9 V vs. reversible hydrogen electrode (RHE), with faradaic efficiencies of about 90–92% at −1.25 V (vs. RHE). These results indicate that under in-situ conditions, the electrode surfaces might converge to very similar structures, with partially reduced or metastable Sn oxides, which serve as active sites for the CO2 reduction. The high faradaic efficiencies of the Sn electrodes brought by the etching/air exposition procedure is ascribed to the formation of a Sn oxide layer with optimized thickness, which is persistent under in situ conditions. Such oxide layer enables the CO2 “activation”, also favoring the electron transfer during the CO2 reduction reaction due to its better electric conductivity. In order to elucidate the reaction mechanism, we have performed density functional theory calculations on different slab models starting from the bulk SnO and Sn6O4(OH)4 compounds with focus on the formation of -OH groups at the water-oxide interface. We have found that the insertion of CO2 into the Sn-OH bond is thermodynamically favorable, leading to the stabilization of the tin-carbonate species, which is subsequently reduced to produce formic acid through a proton-coupled electron transfer process. The calculated potential for CO2 reduction (E = −1.09 V vs. RHE) displays good agreement with the experimental findings and, therefore, support the CO2 insertion onto Sn-oxide as a plausible mechanism for the CO2 reduction in the potential domain where metastable oxides are still present on the Sn surface. These results not only rationalize a number of literature divergent reports but also provide a guideline for the design of efficient CO2 reduction electrocatalysts.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5012
Author(s):  
Gianluca Zanellato ◽  
Pier Giorgio Schiavi ◽  
Robertino Zanoni ◽  
Antonio Rubino ◽  
Pietro Altimari ◽  
...  

Catalytic electroreduction of carbon dioxide represents a promising technology both to reduce CO2 emissions and to store electrical energy from discontinuous sources. In this work, electrochemical deposition of copper on to a gas-diffusion support was tested as a scalable and versatile nanosynthesis technique for the production of catalytic electrodes for CO2 electroreduction. The effect of deposition current density and additives (DAT, DTAB, PEG) on the catalysts’ structure was evaluated. The selectivity of the synthesized catalysts towards the production of CO was evaluated by analyzing the gaseous products obtained using the catalysts as cathodes in electroreduction tests. Catalyst morphology was deeply influenced by the deposition additives. Copper nanospheres, hemispherical microaggregates of nanowires, and shapeless structures were electrodeposited in the presence of dodecyltrimethylammonium bromide (DTAB), 3,5-diamino-1,2,4-triazole (DAT) and polyethylene glycol (PEG), respectively. The effect of the deposition current density on catalyst morphology was also observed and it was found to be additive-specific. DTAB nanostructured electrodes showed the highest selectivity towards CO production, probably attributable to a higher specific surface area. EDX and XPS analysis disclosed the presence of residual DAT and DTAB uniformly distributed onto the catalysts structure. No significant effects of electrodeposition current density and Cu(I)/Cu(II) ratio on the selectivity towards CO were found. In particular, DTAB and DAT electrodes yielded comparable selectivity, although they were characterized by the highest and lowest Cu(I)/Cu(II) ratio, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4457 ◽  
Author(s):  
Guillermo Díaz-Sainz ◽  
Manuel Alvarez-Guerra ◽  
Angel Irabien

Climate change has become one of the most important challenges in the 21st century, and the electroreduction of CO2 to value-added products has gained increasing importance in recent years. In this context, formic acid or formate are interesting products because they could be used as raw materials in several industries as well as promising fuels in fuel cells. Despite the great number of studies published in the field of the electrocatalytic reduction of CO2 to formic acid/formate working with electrocatalysts of different nature and electrode configurations, few of them are focused on the comparison of different electrocatalyst materials and electrode configurations. Therefore, this work aims at presenting a rigorous and comprehensive comparative assessment of different experimental data previously published after many years of research in different working electrode configurations and electrocatalysts in a continuous mode with a single pass of the inputs through the reactor. Thus, the behavior of the CO2 electroreduction to formate is compared operating with Sn and Bi-based materials under Gas Diffusion Electrodes (GDEs) and Catalyst Coated Membrane Electrodes (CCMEs) configurations. Considering the same electrocatalyst, the use of CCMEs improves the performance in terms of formate concentration and energy consumption. Nevertheless, higher formate rates can be achieved with GDEs because they allow operation at higher current densities of up to 300 mA·cm−2. Bi-based-GDEs outperformed Sn-GDEs in all the figures of merit considered. The comparison also highlights that in CCME configuration, the employ of Bi-based-electrodes enhanced the behavior of the process, increasing the formate concentration by 35% and the Faradaic efficiency by 11%.


2017 ◽  
Vol 8 (1) ◽  
pp. 174-187 ◽  
Author(s):  
I. Super ◽  
H.A.C. Denier van der Gon ◽  
A.J.H. Visschedijk ◽  
M.M. Moerman ◽  
H. Chen ◽  
...  

2020 ◽  
Author(s):  
Brian Skinn ◽  
McLain Leonard ◽  
DAN WANG ◽  
Fikile R. Brushett

A variety of techniques for management of carbon dioxide emissions from power generation facilities and other industrial sites have been under active investigation for decades, in an effort to mitigate the environmental impacts of these releases. Once such approach is electrochemical reduction, which treats the waste CO2 as a source material for the production of value-added materials. Currently, the most promising form factor for this electrocatalytic application appears to be a stack-based system, where catalyst is immobilized on porous media that is interfaced with a liquid or solid electrolyte, and the reactant carbon dioxide is delivered to the active region by gaseous diffusion, which is orders of magnitude faster that diffusion though aqueous media. Various carbonaceous reduction products can be created depending on the composition, size, and microstructure of the catalyst particles, including formic acid/formate, carbon monoxide, alcohols, and hydrocarbons. In general, smaller catalyst particles, ideally in the nanoparticulate (<< 1 μm) range, tend to yield superior catalytic performance, due to a combination of factors such as a higher density of exposed grain boundaries and a higher fraction of exposed crystalline facets that are uncommon in particles of micron size or larger.This talk will survey recent work illustrating the ability of pulse/pulse-reverse electrodeposition processes to tune the size of particles applied to gas-diffusion electrode substrates, with a primary focus on two single-metal catalyst materials relevant to carbon dioxide electroreduction: tin and copper. The former is a catalyst primarily for formic acid production, while the latter is unique among single-metal catalysts as the only element known to date to produce significant amounts of hydrocarbons and/or alcohols. Particle morphology and representative particle size will be discussed as a function of pulsed electrodeposition waveform parameters, with the goal of highlighting overarching trends across the waveform space.


2018 ◽  
Author(s):  
Brian Skinn ◽  
DAN WANG ◽  
Rajeswaran Radhakrishnan ◽  
Timothy Hall ◽  
E Jennings Taylor ◽  
...  

The performance of electrocatalysts for the electrochemical carbon dioxide (CO2) reduction reaction (eCO2RR) is largely dependent on the ability to efficiently deliver CO2 to the active sites. A variety of reactor configurations have been explored in the literature that can be broadly classified as based on either liquid- or gas-phase reactant delivery. These configurations utilize a range of electrode types including metal plates, meshes, packed granules, and gas diffusion electrodes (GDEs) [1]. Amongst these methods, the use of gas-phase reactor designs employing GDEs enables a dramatic increase in current density (typically an order of magnitude or larger) over liquid-phase reactor designs, where the low solubility and aqueous diffusivity of CO2 result in severe mass transport limitations.However, the performance of GDEs in various CO2 electroreduction processes can be hampered by poor catalyst utilization and transport limitations within the catalyst layer. At higher catalyst loadings (thicker catalyst layers), which are desirable for high production rates, conversion efficiencies drop and undesirable side product formation (both from hydrogen evolution and diversion of carbon to alternative reaction pathways) increases due to reactant starvation. Reducing particle size typically enhances both catalyst utilization and activity per unit mass. This, in turn, may enable thinner catalyst layers, mitigating or avoiding such decreases in product selectivity. While synthesis methods exist for generating smaller (< 10 nm) particles, these particles must still be deposited on a gas-diffusion layer (GDL) substrate such that ionic and electronic contact can be maintained with the electrolyte and GDL, respectively.Previous work directed towards platinum (Pt) catalyst utilization in polymer electrolyte fuel cell GDEs demonstrated an “electrocatalyzation” (EC) approach that used pulse and pulse-reverse electrodeposition to obtain highly dispersed and uniform Pt catalyst nanoparticles (~5 nm) [2-4]. Moreover, since the catalyst was electroplated through an ionomer layer onto the bare GDL, the formed nanoparticles were inherently in both electronic and ionic contact within the GDE and, consequently, utilization was enhanced. Specifically, for the oxygen reduction reaction, the electrodeposited catalyst exhibited equivalent performance at 0.05 mg/cm2 loading compared to a conventionally prepared GDE with a loading of 0.5 mg/cm2 [4].This talk will discuss the electrodeposition of tin (Sn) and copper (Cu) onto both commercially-available and custom-fabricated GDLs through an EC process, and the electrocatalysis performance of these catalysts as compared to state-of-the-art Sn and Cu nanoparticle catalysts (75-150 nm) prepared by spray-coating. Testing in a custom flow-cell electroreactor has demonstrated that the EC GDEs exhibit electrocatalytic performance comparable or superior to both literature reports and the spray-painted catalysts. Further, clear effects of the pulsed-waveform EC parameters on product distribution and total current density will be highlighted. Preliminary work toward development of GDLs robust against electrolyte saturation/penetration over many hours of operation will also be discussed. In summary, the highly scalable EC approach appears promising for fabricating active catalytic layers directly onto GDL substrates for carbon dioxide reduction applications.References[1] I. Merino-Garcia, E. Alvarez-Guerra, J. Albo, A. Irabien, Chemical Engineering Journal, 305 (2016) 104-120.[2] M. E. Inman, E.J. Taylor, in, U.S. Patent No. 6,080,504, 2000.[3] N .R.K. Vilambi Reddy, E. B. Anderson, E.J. Taylor, in, U.S. Patent No. 5,084,144, 1992.[4] E.J. Taylor, E.B. Anderson, N.R.K. Vilambi, Journal of The Electrochemical Society, 139 (1992) L45-L46.


Sign in / Sign up

Export Citation Format

Share Document