The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist

2007 ◽  
Vol 31 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Kathleen M. Eyster

Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction. However, lipids serve a variety of roles in signal transduction. They act as ligands that activate signal transduction pathways as well as mediators of signaling pathways, and lipids are the substrates of lipid kinases and lipid phosphatases. Cell membranes are the source of the lipids involved in signal transduction, but membranes also constitute lipid barriers that must be traversed by signal transduction pathways. The purpose of this review is to explore the magnitude and diversity of the roles of the cell membrane and lipids in signal transduction and to highlight the interrelatedness of families of lipid mediators in signal transduction.

1995 ◽  
Vol 269 (2) ◽  
pp. C435-C442 ◽  
Author(s):  
Y. Wen ◽  
M. C. Cabot ◽  
E. Clauser ◽  
S. L. Bursten ◽  
J. L. Nadler

A stable Chinese hamster ovary fibroblast line expressing the rat vascular type 1a angiotensin II (ANG II) receptor was used to study the lipid-derived signal transduction pathways elicited by type 1a ANG II receptor activation. ANG II caused a biphasic and dose-dependent increase in diacylglycerol (DAG) accumulation with an initial peak at 15 s (181 +/- 11% of control, P < 0.02) and a second sustained peak at 5-10 min (214 +/- 10% of control, P < 0.02). The late DAG peak was derived from phosphatidylcholine (PC), and the formation was blocked by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANG II also increased phosphatidic acid (PA) production nearly fourfold by 7.5 min. In the presence of ethanol, ANG II markedly increased phosphatidylethanol (PEt) formation, indicating activation of phospholipase D (PLD). ANG II was shown to increase the mass of three separate PA species, one of which apparently originated from DAG kinase action on PC-phospholipase C (PLC)-produced DAG, providing evidence for PC-PLC activity. ANG II also formed a third PA species, which originated neither from PLD nor from DAG kinase. These results demonstrate that multiple lipid signals propagated via collateral stimulation of PLC and PLD are generated by specific activation of the vascular type 1a ANG II receptor.


2003 ◽  
Vol 185 (1) ◽  
pp. 285-294 ◽  
Author(s):  
Igor B. Zhulin ◽  
Anastasia N. Nikolskaya ◽  
Michael Y. Galperin

ABSTRACT Transmembrane receptors in microorganisms, such as sensory histidine kinases and methyl-accepting chemotaxis proteins, are molecular devices for monitoring environmental changes. We report here that sensory domain sharing is widespread among different classes of transmembrane receptors. We have identified two novel conserved extracellular sensory domains, named CHASE2 and CHASE3, that are found in at least four classes of transmembrane receptors: histidine kinases, adenylate cyclases, predicted diguanylate cyclases, and either serine/threonine protein kinases (CHASE2) or methyl-accepting chemotaxis proteins (CHASE3). Three other extracellular sensory domains were shared by at least two different classes of transmembrane receptors: histidine kinases and either diguanylate cyclases, adenylate cyclases, or phosphodiesterases. These observations suggest that microorganisms use similar conserved domains to sense similar environmental signals and transmit this information via different signal transduction pathways to different regulatory circuits: transcriptional regulation (histidine kinases), chemotaxis (methyl-accepting proteins), catabolite repression (adenylate cyclases), and modulation of enzyme activity (diguanylate cyclases and phosphodiesterases). The variety of signaling pathways using the CHASE-type domains indicates that these domains sense some critically important extracellular signals.


1994 ◽  
Vol 14 (10) ◽  
pp. 6954-6961 ◽  
Author(s):  
M P Myers ◽  
M B Murphy ◽  
G Landreth

CLK is a dual-specificity protein kinase capable of phosphorylating serine, threonine, and tyrosine residues. We have investigated the action of CLK by establishing stable PC12 cell lines capable of inducibly expressing CLK. Expression of CLK in stably transfected PC12 cells mimicked a number of nerve growth factor (NGF)-dependent events, including the morphological differentiation of these cells and the elaboration of neurites. Moreover, CLK expression enhanced the rate of NGF-mediated neurite outgrowth of these cells, indicating that CLK expression and NGF treatment activate similar signal transduction pathways. CLK expression, unlike NGF, was not able to promote PC12 cell survival in serum-free media, demonstrating that CLK only partially recapitulated the actions of NGF on these cells and that the biochemical pathways necessary for morphological differentiation can be stimulated without also stimulating those necessary for survival. Induction of CLK expression also resulted in the selective activation of protein kinases that are components of growth factor-stimulated signal transduction cascades, including ERK1, ERK2, pp90RSK, and S6PKII. Induction of CLK expression, however, did not stimulate pp70S6K or Fos kinase, two NGF-sensitive protein kinases. These data indicate that CLK action mediates the morphological differentiation of these cells through its capacity to independently stimulate signal transduction pathways normally employed by NGF.


Genetics ◽  
1999 ◽  
Vol 153 (3) ◽  
pp. 1219-1231
Author(s):  
Paula M Alepuz ◽  
Dina Matheos ◽  
Kyle W Cunningham ◽  
Francisco Estruch

Abstract In eukaryotes, control of transcription by extracellular signals involves the translocation to the nucleus of at least one component of the signal transduction pathway. Transport through the nuclear envelope requires the activity of an import or export receptor that interacts with the small GTPase Ran. We have cloned the MSN5 gene of the yeast Saccharomyces cerevisiae that is postulated to encode one of these receptors. Msn5p belongs to a family of proteins with a conserved N-terminal sequence that acts as a RanGTP-binding domain. The results presented here provide genetic data supporting Msn5p involvement in several different signal transduction pathways. All of these pathways include changes in gene expression, and regulated nucleocytoplasmic redistribution of a component in response to external conditions has already been described in some of them. We have cloned MSN5 following two different strategies. Msn5p was constitutively localized in the nucleus. Phenotypic analysis of the msn5 mutant demonstrated that this protein participates in processes such as catabolite repression, calcium signaling, mating, and cell proliferation, as well as being involved in previously characterized phosphate utilization. Therefore, Msn5p could be a receptor for several proteins involved in different signaling pathways.


Parasitology ◽  
2014 ◽  
Vol 141 (9) ◽  
pp. 1156-1166 ◽  
Author(s):  
A. HOMBACH ◽  
J. CLOS

SUMMARYHsp90 (a.k.a. Hsp83) plays a significant role in the life cycle control of the protozoan parasiteLeishmania donovani. Rather than protectingLeishmaniaspp. against adverse and stressful environs, Hsp90 is required for the maintenance of the motile, highly proliferative insect stage, the promastigote. However, Hsp90 is also essential for survival and proliferation of the intracellular mammalian stage, the amastigote. Moreover, recent evidence shows Hsp90 and other components of large multi-chaperone complexes as substrates of stage-specific protein phosphorylation pathways, and thus as likely effectors of the signal transduction pathways inLeishmaniaspp. Future efforts should be directed towards the identification of the protein kinases and the critical phosphorylation sites as targets for novel therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document