Traction fields, moments, and strain energy that cells exert on their surroundings

2002 ◽  
Vol 282 (3) ◽  
pp. C595-C605 ◽  
Author(s):  
James P. Butler ◽  
Iva Marija Tolić-Nørrelykke ◽  
Ben Fabry ◽  
Jeffrey J. Fredberg

Adherent cells exert tractions on their surroundings. These tractions can be measured by observing the displacements of beads embedded on a flexible gel substrate on which the cells are cultured. This paper presents an exact solution to the problem of computing the traction field from the observed displacement field. The solution rests on recasting the relationship between displacements and tractions into Fourier space, where the recovery of the traction field is especially simple. We present two subcases of the solution, depending on whether or not tractions outside the observed cell boundaries are set to be zero. The implementation is computationally efficient. We also give the solution for the traction field in a representative human airway smooth muscle cell contracted by treatment with histamine. Finally, we give explicit formulas for reducing the traction and displacement fields to contraction moments, the orientation of the principal axes of traction, and the strain energy imparted by the cell to the substrate.

1989 ◽  
Vol 256 (2) ◽  
pp. C329-C335 ◽  
Author(s):  
R. A. Panettieri ◽  
R. K. Murray ◽  
L. R. DePalo ◽  
P. A. Yadvish ◽  
M. I. Kotlikoff

We report the development of a nontransformed line of human airway smooth muscle cells retaining smooth muscle-specific contractile protein expression and physiological responsiveness to agonists implicated in inflammatory airway diseases. Specific responses to histamine, leukotrienes, bradykinin, platelet-activating factor, substance P, and thromboxane analogues are demonstrated as well as functional coupling to beta-adrenergic receptors. The cell line was characterized using indirect immunofluorescence, as well as electrophoretic separation and immunoblot analysis of smooth muscle-specific actin. Functional responses were assessed by measurements of cytosolic calcium and stimulation of adenosine 3',5'-cyclic monophosphate production. The cells retain their responsiveness over many population doublings and should be a useful model to examine specific receptor-effector mechanisms, as well as the effects of neurohumoral agents on the regulation of airway smooth muscle growth and differentiation.


2004 ◽  
Vol 287 (3) ◽  
pp. C643-C654 ◽  
Author(s):  
Marina Puig-de-Morales ◽  
Emil Millet ◽  
Ben Fabry ◽  
Daniel Navajas ◽  
Ning Wang ◽  
...  

We probed elastic and loss moduli in the adherent human airway smooth muscle cell through a variety of receptor systems, each serving as a different molecular window on cytoskeletal dynamics. Coated magnetic microbeads were attached to the cell surface via coating-receptor binding. A panel of bead coatings was investigated: a peptide containing the sequence RGD, vitronectin, urokinase, activating antibody against β1-integrin, nonactivating antibody against β1-integrin, blocking antibody against β1-integrin, antibody against β1-integrin, and acetylated low-density lipoprotein. An oscillatory mechanical torque was applied to the bead, and resulting lateral displacements were measured at baseline, after actin disruption by cytochalasin D, or after contractile activation by histamine. As expected, mechanical moduli depended strongly on bead type and bead coating, differing at the extremes by as much as two orders of magnitude. In every case, however, elastic and loss moduli increased with frequency f as a weak power law, f  x−1. Moreover, with few exceptions, data could be scaled such that elastic and frictional responses depended solely on the power law exponent x. Taken together, these data suggest that power law behavior represents a generic feature of underlying protein-protein dynamics.


Author(s):  
Kevin A. Rider ◽  
Bernard J. Martin

Terrain-induced vibration of a moving vehicle adversely affects the ability to quickly and accurately perform in-vehicle pointing tasks by altering the planned fingertip trajectory. The relationship between movement speed and accuracy is a result of the combined use of visual and somatosensory feedbacks which are used to discern movement deviations and make necessary compensatory movements. Participants (N=20) performed three-dimensional rapid pointing tasks under stationary and ride motion conditions to three touchpanel displays. Ride motion contributed to increased reaction and movement times and increased endpoint variability. Trajectory deviations were correlated to the principal direction of vehicle acceleration. Reaches orthogonal to the dominant vehicle acceleration exhibited larger endpoint variability, and reaches to the elevated touchpanel resulted in the largest variability across all motion conditions. Principal axes of endpoint ellipses were along the on-axis and off-axis directions of fingertip movement.


Researchers know a little about time. If they could not find where time was, they could not study it. The objective of this study was to find where time was. Any numbers in three principal axes were used to be data. Galileo’s concept of the relationship among distance, speed, and time was used to find a position of a value of time in any number lines in a three-dimensional body. Mathematical derivative was used to prove the positions of the values of time. The investigation found that time is in all number lines including three principal axes. Also, the time equation can be used to calculate the exact position of any values of time in the line. The equation can be used to explain equations in science such as equations of Newton, Einstein, and Plank, and social science such as equations of consumption and saving in macroeconomics. If researchers use the time equation to explain N equations, then a time value can get at least N variables of N equations. The speed of calculation will increase. The equation will be used to open new characteristics about time and others because mathematicians use numbers to represent everything in nature


Author(s):  
N. Lomov ◽  
S. Sidyakin

The concept of morphological moments of binary images is introduced. Morphological moments can be used as a shape descriptor combining an integral width description of an object with a description of its spatial distribution. The relationship between the proposed descriptor and the disc cover of the figure is discussed and an exact analytical method for descriptor calculation is proposed within the continuous morphology framework. The approach is based on the approximation of the shape by a polygonal figure and the extraction of its medial representation in the form of the continuous skeleton and the radial function. The proposed method for calculation of morphological moments achieves high accuracy and it is computationally efficient. Experimentations have been conducted. Obtained results indicate that the morphological moments are a more informative and rich shape descriptor than the area of the disc cover. Application of morphological moments to the font recognition task improves the recognition quality.


Oncotarget ◽  
2016 ◽  
Vol 7 (49) ◽  
pp. 80238-80251 ◽  
Author(s):  
Hesam Movassagh ◽  
Nazanin Tatari ◽  
Lianyu Shan ◽  
Latifa Koussih ◽  
Duaa Alsubait ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 2203 ◽  
Author(s):  
Hafiz Rehman ◽  
Sungon Lee

In this paper, a fully automatic and computationally efficient midsagittal plane (MSP) extraction technique in brain magnetic resonance images (MRIs) has been proposed. Automatic detection of MSP in neuroimages can significantly aid in registration of medical images, asymmetric analysis, and alignment or tilt correction (recenter and reorientation) in brain MRIs. The parameters of MSP are estimated in two steps. In the first step, symmetric features and principal component analysis (PCA)-based technique is used to vertically align the bilateral symmetric axis of the brain. In the second step, PCA is used to achieve a set of parallel lines (principal axes) from the selected two-dimensional (2-D) elliptical slices of brain MRIs, followed by a plane fitting using orthogonal regression. The developed algorithm has been tested on 157 real T1-weighted brain MRI datasets including 14 cases from the patients with brain tumors. The presented algorithm is compared with a state-of-the-art approach based on bilateral symmetry maximization. Experimental results revealed that the proposed algorithm is fast (<1.04 s per MRI volume) and exhibits superior performance in terms of accuracy and precision (a mean z-distance of 0.336 voxels and a mean angle difference of 0.06).


2018 ◽  
Vol 18 (07) ◽  
pp. 1840018
Author(s):  
HAIXIA ZHANG ◽  
DI ZHANG ◽  
XIAO QIN ◽  
HUI WANG ◽  
LIN LI

Uniaxial test is easy to access and to obtain accuracy data, but it is difficult to acquire two-dimensional deformation information. We investigated the relationship between the two strain components of corneal strip in uniaxial tests, which is the basis for determining of anisotropic strain energy function of cornea via uniaxial tests. Nine rabbits were taken. The left and right corneas were cut along superior-inferior (SI) and nasal-temporal (NT) direction, respectively. For each strip the uniaxial test was carried out, and the tensile displacements, strip images and loads were recorded. Then the stretching strain, the transversal strains and stress were obtained. Optimization based inverse analysis was utilized to find the best among six fitting models that characterizes the relationship between two strain components in uniaxial tests. All models fitted well the experimental data gathered for corneal strips ([Formula: see text]). According to the model selection index, the power model achieved the best performance index: 0.1268 for SI strips and 0.1063 for NT strips versus 0.151 (SI strips) and 0.107 (NT strips) found at most by other models. Thus, it is the most suitable one for describing the relationship between the two strain components of corneal strip during uniaxial stretching.


Sign in / Sign up

Export Citation Format

Share Document