Intracellular diffusion gradients of O2 and ATP

1986 ◽  
Vol 250 (5) ◽  
pp. C663-C675 ◽  
Author(s):  
D. P. Jones

Endogenous enzymes with different subcellular localizations provide in situ probes to study O2 and ATP concentration at various sites within cells. Results from this approach indicate that substantial intracellular concentration gradients occur under some O2- and ATP-limited conditions. These studies, along with electron microscopic analyses and mathematical modeling, indicate that clustering and distribution of mitochondria are major factors in determining the magnitude and location of the concentration gradients. The mitochondria appear to be clustered in sites of high ATP demand to maximize ATP supply under conditions of limited production. The size of such clusters is limited by the magnitude of the O2 gradient needed to provide adequate O2 concentrations for mitochondrial function within the clusters. Thus microheterogeneity of metabolite concentrations can occur in cells without membranal compartmentation and may be important in determining the rates of various high-flux processes.

Author(s):  
Joseph E. Mazurkiewicz

Immunocytochemistry is a powerful investigative approach in which one of the most exacting examples of specificity, that of the reaction of an antibody with its antigen, isused to localize tissue and cell specific molecules in situ. Following the introduction of fluorescent labeled antibodies in T950, a large number of molecules of biological interest had been studied with light microscopy, especially antigens involved in the pathogenesis of some diseases. However, with advances in electron microscopy, newer methods were needed which could reveal these reactions at the ultrastructural level. An electron dense label that could be coupled to an antibody without the loss of immunologic activity was desired.


Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


1990 ◽  
Vol 30 (3) ◽  
pp. 281-293
Author(s):  
David J. Wilson ◽  
Ann N. Clarke ◽  
Robert D. Mutch

2006 ◽  
Vol 72 (8) ◽  
pp. 5311-5317 ◽  
Author(s):  
Kengo Kubota ◽  
Akiyoshi Ohashi ◽  
Hiroyuki Imachi ◽  
Hideki Harada

ABSTRACT Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.


Sign in / Sign up

Export Citation Format

Share Document