Energy metabolism of skeletal muscle biopsies stimulated anaerobically without load in vitro

1986 ◽  
Vol 250 (6) ◽  
pp. C813-C820 ◽  
Author(s):  
D. A. Young ◽  
M. M. Chi ◽  
O. H. Lowry

This study was made to test the validity of a simple biopsy technique for assessing the metabolic capacity of skeletal muscle. The biopsy is stimulated under mineral oil without attachment, i.e., without load or tension, then freeze-clamped and assayed for ATP, phosphocreatine, glucose 6-phosphate, and lactate. The mineral oil creates a closed anaerobic system. Background studies demonstrated in the absence of a load, metabolic changes with stimulation were little affected by cutting the fibers to obtain the biopsy; and high-energy phosphate (approximately P) consumption during a brief tetanus was not much lower than that for an isometric tetanus. Individual fast-twitch oxidative-glycolytic (IIA) and fast-twitch glycolytic (IIB) fibers obtained from the freeze-clamped biopsy showed distinct differences in approximately P consumption and metabolic changes. The results indicate that this technique could be useful for studies of normal and pathological human muscle.

1987 ◽  
Vol 65 (4) ◽  
pp. 697-703 ◽  
Author(s):  
Roberto T. Sudo ◽  
Gisele Zapata ◽  
Guilherme Suarez-Kurtz

The characteristics of transient contractures elicited by rapid cooling of frog or mouse muscles perfused in vitro with solutions equilibrated with 0.5–2.0% halothane are reviewed. The data indicate that these halothane-cooling contractures are dose dependent and reproducible, and their amplitude is larger in muscles containing predominantly slow-twitch type fibers, such as the mouse soleus, than in muscles in which fast-twitch fibers predominate, such as the mouse extensor digitorum longus. The halothane-cooling contractures are potentiated in muscles exposed to succinylcholine. The effects of Ca2+-free solutions, of the local anesthetics procaine, procainamide, and lidocaine, and of the muscle relaxant dantrolene on the halothane-cooling contractures are consistent with the proposal that the halothane-cooling contractures result from synergistic effects of halothane and low temperature on Ca sequestration by the sarcoplasmic reticulum. Preliminary results from skinned rabbit muscle fibers support this proposal. The halothane concentrations required for the halothane-cooling contractures of isolated frog or mouse muscles are comparable with those observed in serum of patients during general anesthesia. Accordingly, fascicles dissected from muscle biopsies of patients under halothane anesthesia for programmed surgery develop large contractures when rapidly cooled. The amplitude of these halothane-cooling contractures declined with the time of perfusion of the muscle fascicles in vitro with halothane-free physiological solutions. It is suggested that the halothane-cooling contractures could be used as a simple experimental model for the investigation of the effects of halothane on Ca homeostasis and contractility in skeletal muscle and for study of drugs of potential use in the management of the contractures associated with the halothane-induced malignant hyperthermia syndrome. It is shown that salicylates, but not indomethacin or mefenamic acid, inhibit the halothane-cooling contractures.


2008 ◽  
Vol 294 (1) ◽  
pp. R12-R16 ◽  
Author(s):  
Kerstin M. Oltmanns ◽  
Uwe H. Melchert ◽  
Harald G. Scholand-Engler ◽  
Maria C. Howitz ◽  
Bernd Schultes ◽  
...  

The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using 31P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by 31P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain ( P = 0.013), while there was a similar trend in the hypopglycemic condition ( P = 0.055). Skeletal muscle content remained constant in both conditions ( P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to −4%) revealed clear divergent effects in both conditions ( P < 0.05). These effects were reflected by PCr/Pi ratio ( P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia ( P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.


2006 ◽  
Vol 290 (6) ◽  
pp. C1616-C1624 ◽  
Author(s):  
Youngran Chung ◽  
Shih-Jwo Huang ◽  
Alan Glabe ◽  
Thomas Jue

Myoglobin (Mb) has a purported role in facilitating O2 diffusion in tissue, especially as cellular Po2 drops or the respiration demand increases. Inhibiting Mb with CO under conditions that accentuate the facilitated diffusion role should then elicit a significant physiological response. In one set of experiments, the perfused myocardium received buffer with decreasing Po2 (225, 129, and 64 mmHg). Intracellular Po2 declined, as reflected in the 1H NMR Val E11 signal of MbO2 (67%, 32%, and 18%). The addition of 6% CO further reduced the available MbO2 (11%, 9%, and 7%), as evidenced by the decline of the MbO2 Val E11 signal intensity at −2.76 ppm. In a second set of experiments, electrical stimulation increased the heart rate (300, 450, and 540 beats/min) and correspondingly the O2 consumption rate (MV̇o2). Intracellular Po2 also declined, as reflected in the slight drop in the MbO2 signal (100%, 96%, and 82%). MV̇o2 increased (100%, 114%, 165%). The addition of 3% CO in the stimulated hearts further decreased the available MbO2 (46%, 44%, and 29%). In all cases, CO inactivation of Mb does not induce any change in the respiration rate, contractile function, and high-energy phosphate levels. Moreover, the MbCO/MbO2 partition coefficient shifts dramatically from its in vitro value during hypoxia and increased work. The observation suggests a modulation of an intracellular O2 gradient. Overall, the experimental observations provide no evidence of a facilitated diffusion role for Mb in perfused myocardium and implicate a physiologically responsive intracellular O2 gradient.


1976 ◽  
Vol 230 (6) ◽  
pp. 1744-1750 ◽  
Author(s):  
TB Allison ◽  
SP Bruttig ◽  
Crass MF ◽  
RS Eliot ◽  
JC Shipp

Significant alterations in heart carbohydrate and lipid metabolism are present 48 h after intravenous injection of alloxan (60 mg/kg) in rats. It has been suggested that uncoupling of oxidative phosphorylation occurs in the alloxanized rat heart in vivo, whereas normal oxidative metabolism has been demonstrated in alloxan-diabetic rat hearts perfused in vitro under conditions of adequate oxygen delivery. We examined the hypothesis that high-energy phosphate metabolism might be adversely affected in the alloxan-diabetic rat heart in vivo. Phosphocreatine and ATP were reduced by 58 and 45%, respectively (P is less than 0.001). Also, oxygen-dissociation curves were shifted to the left by 4 mmHg, and the rate of oxygen release from blood was reduced by 21% (P is less than 0.01). Insulin administration normalized heart high-energy phosphate compounds. ATP production was accelerated in diabetic hearts perfused in vitro with a well-oxygenated buffer. These studies support the hypothesis that oxidative ATP production in the alloxan-diabetic rat heart is reduced and suggest that decreased oxygen delivery may have a regulatory role in the oxidative metabolism of the diabetic rat heart.


1963 ◽  
Vol 18 (6) ◽  
pp. 1105-1110 ◽  
Author(s):  
L. O. Pilgeram ◽  
D. A. Loegering

A possible role for cellular energy metabolism in the control of the blood clotting mechanism has been shown. High-energy phosphate was found to strongly inhibit the recalcification time of plasma prepared with siliconized or glass surfaces. The nucleotide, adenosine triphosphate, in crystalline form and chromatographically pure, will inhibit or completely prevent coagulation in vitro. Reactivity is based primarily on the high-energy phosphate linkage and secondarily upon the nucleoside, adenosine. The principal site of action for ATP is on an unidentified precursor of thromboplastin. Available evidence indicates an important role for energy metabolism in the cellular mechanisms which effect a control over thromboplastin generation and its possible thrombotic and arteriosclerotic sequelae. cellular control mechanisms; blood fluidity; thrombosis arteriosclerosis; aging Submitted on July 1, 1963


1993 ◽  
Vol 264 (1) ◽  
pp. E101-E108 ◽  
Author(s):  
A. M. Karinch ◽  
S. R. Kimball ◽  
T. C. Vary ◽  
L. S. Jefferson

Peptide-chain initiation is inhibited in fast-twitch skeletal muscle, but not heart, of diabetic rats. We have investigated mechanisms that might maintain eukaryotic initiation factor (eIF)-2B activity, preventing loss of efficiency of protein synthesis in heart of diabetic rats but not in fast-twitch skeletal muscle. There was no change in the amount or phosphorylation state of eIF-2 in skeletal or cardiac muscle during diabetes. In contrast, eIF-2B activity was decreased in fast-twitch but not slow-twitch muscle from diabetic animals. NADP+ inhibited partially purified eIF-2B in vitro, but addition of equimolar NADPH reversed the inhibition. The NADPH-to-NADP+ ratio was unchanged in fast-twitch muscle after induction of diabetes but was increased in heart of diabetic rats, suggesting that NADPH also prevents inhibition of eIF-2B in vivo. The activity of casein kinase II, which can phosphorylate and activate eIF-2B in vitro, was significantly lower in extracts of fast-twitch, but not cardiac muscle, of diabetic rats compared with controls. The results presented here demonstrate that changes in eIF-2 alpha phosphorylation are not responsible for the effect of diabetes on eIF-2B activity in fast-twitch skeletal muscle. Modulation of casein kinase II activity may be a factor in the regulation of protein synthesis in muscle during acute diabetes. The activity of eIF-2B in heart might be maintained by the increased NADPH/NADP+.


Sign in / Sign up

Export Citation Format

Share Document