Abnormalities in protein synthesis and degradation induced by extracellular pH in BC3H1 myocytes

1991 ◽  
Vol 260 (2) ◽  
pp. C277-C282 ◽  
Author(s):  
B. K. England ◽  
J. L. Chastain ◽  
W. E. Mitch

Metabolic acidosis impairs protein and amino acid metabolism in rat muscle. To examine how extracellular acidification affects cellular protein turnover, we studied the BC3H1 myocyte. At pH 7.1 vs. 7.4, intracellular pH was lower; the decrease was greater in cells incubated in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-tris(hydroxymethyl)aminomethane compared with bicarbonate buffer. We monitored degradation of proteins labeled with L-[14C]phenylalanine by measuring radioactivity released into media containing an excess of unlabeled phenylalanine. Extracellular acidification increased degradation compared with incubation at pH 7.4. Adding a physiological concentration of insulin (1 nM) decreased protein degradation at pH 7.1 and 7.4; a supraphysiological (71 nM) insulin concentration decreased degradation at pH 7.1 to the same rate as cells incubated at pH 7.4 without insulin. Compared with pH 7.4, protein synthesis decreased 29% at pH 7.2; at pH 7.6 it increased 129%. Insulin stimulated protein synthesis at all pHs, but at pH 7.4 the insulin-induced increase was less than the rate at pH 7.6 without insulin. Dexamethasone did not change protein breakdown regardless of the pH; it had variable effects on protein synthesis. Thus extracellular acidification causes marked changes in protein turnover in BC3H1 myocytes.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Aline Ricarda Dörrbaum ◽  
Beatriz Alvarez-Castelao ◽  
Belquis Nassim-Assir ◽  
Julian D Langer ◽  
Erin M Schuman

Protein turnover, the net result of protein synthesis and degradation, enables cells to remodel their proteomes in response to internal and external cues. Previously, we analyzed protein turnover rates in cultured brain cells under basal neuronal activity and found that protein turnover is influenced by subcellular localization, protein function, complex association, cell type of origin, and by the cellular environment (Dörrbaum et al., 2018). Here, we advanced our experimental approach to quantify changes in protein synthesis and degradation, as well as the resulting changes in protein turnover or abundance in rat primary hippocampal cultures during homeostatic scaling. Our data demonstrate that a large fraction of the neuronal proteome shows changes in protein synthesis and/or degradation during homeostatic up- and down-scaling. More than half of the quantified synaptic proteins were regulated, including pre- as well as postsynaptic proteins with diverse molecular functions.


2020 ◽  
Vol 319 (2) ◽  
pp. C419-C431
Author(s):  
Douglas W. Van Pelt ◽  
Ivan J. Vechetti ◽  
Marcus M. Lawrence ◽  
Kathryn L. Van Pelt ◽  
Parth Patel ◽  
...  

Small noncoding microRNAs (miRNAs) are important regulators of skeletal muscle size, and circulating miRNAs within extracellular vesicles (EVs) may contribute to atrophy and its associated systemic effects. The purpose of this study was to understand how muscle atrophy and regrowth alter in vivo serum EV miRNA content. We also associated changes in serum EV miRNA with protein synthesis, protein degradation, and miRNA within muscle, kidney, and liver. We subjected adult (10 mo) F344/BN rats to three conditions: weight bearing (WB), hindlimb suspension (HS) for 7 days to induce muscle atrophy, and HS for 7 days followed by 7 days of reloading (HSR). Microarray analysis of EV miRNA content showed that the overall changes in serum EV miRNA were predicted to target major anabolic, catabolic, and mechanosensitive pathways. MiR-203a-3p was the only miRNA demonstrating substantial differences in HS EVs compared with WB. There was a limited association of EV miRNA content to the corresponding miRNA content within the muscle, kidney, or liver. Stepwise linear regression demonstrated that EV miR-203a-3p was correlated with muscle mass and muscle protein synthesis and degradation across all conditions. Finally, EV miR-203a-3p expression was significantly decreased in human subjects who underwent unilateral lower limb suspension (ULLS) to induce muscle atrophy. Altogether, we show that serum EV miR-203a-3p expression is related to skeletal muscle protein turnover and atrophy. We suggest that serum EV miR-203a-3p content may be a useful biomarker and future work should investigate whether serum EV miR-203a-3p content is mechanistically linked to protein synthesis and degradation.


1996 ◽  
Vol 270 (6) ◽  
pp. R1231-R1239 ◽  
Author(s):  
S. E. Samuels ◽  
J. R. Thompson ◽  
R. J. Christopherson

Young animals exposed to cold environmental temperatures typically have decreased skeletal muscle accretion but increased heart masses. To explore these phenomena, we measured protein synthesis and degradation in vivo in cardiac and skeletal muscle in weanling rats during short-term cold exposure and rewarming. Control rats were housed at 25 degrees C throughout the experiment. Ad libitum-fed and pair-fed (to the intake of controls) rats were housed at 5 degrees C (cold) for 5 days and then at 25 degrees C (rewarmed) for another 5 days. Cold exposure decreased rates of protein accretion and synthesis in skeletal muscle, whereas degradation did not differ. The effects of cold exposure on skeletal muscle were similar in both pair-fed and ad libitum-fed rats, except growth was lower in pair-fed rats. In cardiac muscle, cold exposure increased rates of protein synthesis and degradation and resulted in increased cardiac mass. Results in pair-fed animals generally fell between those of control and ad libitum-fed cold rats. During rewarming, growth rates were not higher in skeletal muscle in ad libitum-fed re-warmed rats, although protein turnover returned toward control values; in pair-fed rats, it remained lower. In heart, growth rates of ad libitum-fed and pair-fed rewarmed rats decreased due to lower protein synthesis rates. These alterations appear to be consistent with a strategy designed to improve survival in cold environments.


1998 ◽  
Vol 55 (6) ◽  
pp. 1534-1544 ◽  
Author(s):  
Scott D Reid ◽  
T K Linton ◽  
J J Dockray ◽  
D G McDonald ◽  
C M Wood

Protein synthesis, net accretion, and degradation in liver, gill, and white muscle and ribosomal translational efficiency and protein synthesis capacity in liver and gill were measured using a flooding dose of [3H]phenylalanine in juvenile rainbow trout (Oncorhynchus mykiss). The fish were chronically exposed (90 days) in hardwater to the presence or absence of sublethal ammonia (70 µmol total ammonia ·L-1) alone or in combination with a 2°C elevation in the normal temperature profile over the months of June-September 1993 (ambient temperature range 13-22°C). Chronic sublethal exposure to ammonia had little impact on gill protein synthesis and degradation (protein turnover) and even less in muscle. However, in the liver, both protein synthesis and degradation were stimulated following 60 days of the sublethal ammonia exposure. The 2°C elevation in temperature resulted in a slight increase in protein turnover in both gills and liver. However, during the period of peak water temperature, the 2°C elevation in temperature inhibited protein dynamics in these tissues. Overall, elevated environmental ammonia in combination with a summer global warming scenario would challenge the ability of fish to adapt to alterations in the quality of their environment, most notably during periods of peak temperatures.


1986 ◽  
Vol 240 (3) ◽  
pp. 651-657 ◽  
Author(s):  
T A Davis ◽  
I E Karl

To determine whether the enhanced insulin-sensitivity of glucose metabolism in muscle after acute exercise also extends to protein metabolism, untrained and exercise-trained rats were subjected to an acute bout of exercise, and the responses of protein synthesis and degradation to insulin were measured in epitrochlearis muscles in vitro. Acute exercise of both untrained and trained rats decreased protein synthesis in muscle in the absence or presence of insulin, but protein degradation was not altered. Exercise training alone had no effect on protein synthesis or degradation in muscle in the absence or presence of insulin. Acute exercise or training alone enhanced the sensitivities of both protein synthesis and degradation to insulin, but the enhanced insulin-sensitivities from training alone were not additive to those after acute exercise. These results indicate that: a decrease in protein synthesis is the primary change in muscle protein turnover after acute exercise and is not altered by prior exercise training, and the enhanced insulin-sensitivities of metabolism of both glucose and protein after either acute exercise or training suggest post-binding receptor events.


1972 ◽  
Vol 53 (1) ◽  
pp. 143-147 ◽  
Author(s):  
Brian E. Gilbert ◽  
Terry C. Johnson

The measurement of protein turnover involves the product of the rates of protein synthesis and degradation. It is the dynamic balance between these two components that determines the measured net rate of protein synthesis. The data reported here show that brain cells from newborn animals incorporate arginine-14C into acid-insoluble protein at a rate 10-fold greater than the rate for brain cells obtained from 15-day old animals. This difference in incorporation occurred even though the rate of arginine accumulation and the resulting pool size of radioactive precursor were similar for both ages. The measurement of protein turnover in brain cell suspensions prepared from 1-day old animals was shown to be complex and to exhibit a cyclic phenomenon in regard to arginine-14C incorporation into and release from protein. The variation in half-life calculations (0.5–3.5 hr) due to this cyclic phenomenon is discussed. Although puromycin was added in an attempt to amplify the rate of degradation by preventing the synthesis of new protein, it was found that degradation was inhibited as well, suggesting a relationship between protein synthesis and degradation.


1986 ◽  
Vol 233 (1) ◽  
pp. 279-282 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
P H Sugden

Protein synthesis and degradation rates in diaphragms from fed or starved rats were compared in vivo and in vitro. For fed rats, synthesis rates in vivo were approximately twice those in vitro, but for starved rats rates were similar. Degradation rates were less in vivo than in vitro in diaphragms from either fed or starved rats.


1995 ◽  
Vol 269 (6) ◽  
pp. C1347-C1355 ◽  
Author(s):  
K. D. Schluter ◽  
B. C. Millar ◽  
B. J. McDermott ◽  
H. M. Piper

For studies on the regulation of myocardial protein metabolism, isolated adult cardiomyocytes were introduced as an experimental model about a decade ago. When used shortly after isolation, this model represents a tool for studying the properties of normal and diseased myocardium on the cellular level. The influence of various peptide hormones, neurotransmitters, and mechanical stimulation on protein synthesis and degradation in isolated cardiomyocytes has been studied. It has been demonstrated, for example, that alpha 1-adrenoceptor stimulation increases protein synthesis in newly isolated cardiomyocytes, independently of any mechanical effects. Other potential growth stimuli require appropriate conditions to induce cellular responsiveness. Neuropeptide Y, for example, does not stimulate cellular protein synthesis in newly isolated cells, whereas it does so in cells that have been cultured for a week in the presence of serum. Mechanical stretch also represents a growth stimulant. It seems that its signal transduction involves an autocrine loop. Thus different mechanisms, by which exogenous influences can modify cellular protein synthesis and degradation, have been identified on the cellular level, with the use of isolated adult cardiomyocytes.


1985 ◽  
Vol 109 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Ulf Angerås ◽  
Per-Olof Hasseigren

Abstract. Exeprimental hyperthyroidism was induced in rats by daily ip injection of triiodothyronine (T3; 100 μg/100 g body weight) during 3 or 10 days. Protein synthesis and degradation were measured in incubated soleus and extensor digitorum longus (EDL) muscles by determining rate of tyrosine incorporation into protein and release of tyrosine to the incubation medium respectively. Protein synthesis was unaffected by T3 administration during 3 or 10 days. Protein breakdown was significantly increased in soleus but unchanged in EDL in the 3-days experiment. Following administration of T3 for 10 days proteolysis was increased in both muslces. Weight of the soleus muscle was reduced after T3 for 3 days. After 10 days weight and protein content were reduced in both muscles. The study demonstrated that reduced muscle protein content following administration of T3 was the result of increased proteolysis, not decreased protein synthesis. The results further indicate that slow muscle (soleus) is more sensitive to the effects of thyroid hormone than fast muscle (EDL).


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuliang Wei ◽  
Benxiang Li ◽  
Houguo Xu ◽  
Mengqing Liang

Omics approaches provide more metabolic information to explain the relationship between dietary nutrition and fish growth. This study aimed to explore the metabolome and proteome response of turbot (Scophthalmus maximus) fed diets containing lysine and leucine in free and dipeptide forms by the approaches of integrated liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomics. Plant protein-based diets were formulated to contain the equivalent of lysine and leucine in free amino acid [crystalline amino acid (CAA)] and synthetic Lys-Leu (Lys-Leu) forms. The metabolome and proteome profiles of the liver were screened in fish fed either the CAA diet or the Lys-Leu diet after an 8-week feeding trial. Fish fed the Lys-Leu diet showed a significantly higher final body weight and a specific growth rate compared with fish fed the CAA diet. Protein- and amino acid-related metabolic processes in the liver were identified between the Lys-Leu and CAA groups based on differential metabolites and proteins. The proteolytic enzymes and amino acid transporters from differential proteins of the liver showed that the process of protein digestion and absorption may be affected by the different forms of lysine and leucine in the feed. A mechanistic target of rapamycin complex 1 and ubiquitin proteasome pathways were identified by differential proteins, which were involved in the processes of protein synthesis and degradation in the liver. Lysine degradation, tryptophan metabolism, alanine, aspartate, and glutamate metabolism, arginine biosynthesis, arginine and proline metabolism, and glycine, serine, and threonine metabolism were identified based on differential metabolites and proteins, which showed that the metabolism of various amino acids, including lysine, had been affected by both the CAA and Lys-Leu groups. In conclusion, the data of integrated metabonomics and proteomics suggested that different forms of lysine and leucine in the feed may affect liver metabolic processes including protein digestion and absorption, protein synthesis and degradation, and amino acid metabolism. In addition, a good correlation between differential metabolites and proteins was observed in amino acid metabolism by using the approaches of integrated LC-MS/MS-based metabolomics and iTRAQ-based proteomics.


Sign in / Sign up

Export Citation Format

Share Document