Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury

1994 ◽  
Vol 267 (3) ◽  
pp. C784-C795 ◽  
Author(s):  
J. Chen ◽  
R. B. Doctor ◽  
L. J. Mandel

The association/dissociation of ezrin, a microvillar membrane-cytoskeleton linker, was studied to search for the initial step leading to anoxia-induced brush-border breakdown in a rabbit proximal tubule suspension. Electron microscopy studies display time-dependent damage to the microvilli during anoxia; immunoblots demonstrate the dissociation of ezrin from the cytoskeleton, reflected by the significant decrease in Triton X-100-insoluble ezrin from control (91%) to 39% after 30 min. Simultaneously, Triton X-100-soluble and extracellular ezrin increased with no change in total ezrin, Triton X-100 solubility of actin, or total intracellular protein. Parallel immunocytochemistry studies show diffusion of ezrin from the brush border, where ezrin is highly colocalized with F-actin during normoxia into the cytoplasm. Thirty minutes of reoxygenation following 30 min of anoxia causes recovery of the microvillar structure and reassociation of ezrin to the cytoskeleton and the brush border. Application of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (4 mM) or inhibition of intracellular calpain or calcineurin do not prevent the dissociation of ezrin during anoxia. We conclude that ezrin-cytoskeletal dissociation may initiate microvillar breakdown during anoxia via calcium-independent mechanisms.

Author(s):  
John H. L. Watson ◽  
C. N. Sun

That the etiology of Whipple's disease could be bacterial was first suggested from electron micrographs in 1960. Evidence for binary fission of the bacteria, their phagocytosis by histiocytes in the lamina propria, their occurrence between and within the cells of the epithelium and on the brush border of the lumen were reported later. Scanning electron microscopy has been applied by us in an attempt to confirm the earlier observations by the new technique and to describe the bacterium further. Both transmission and scanning electron microscopy have been used concurrently to study the same biopsy specimens, and transmission observations have been used to confirm those made by scanning.The locations of the brush borders, the columnar epithelial cells, the basement membrane and the lamina propria beneath it were each easily identified by scanning electron microscopy. The lamina propria was completely filled with the wiener-shaped bacteria, Fig. 1.


Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 508-514 ◽  
Author(s):  
EI Peerschke

Abstract Previous studies indicated a correlation between the formation of EDTA- resistant (irreversible) platelet-fibrinogen interactions and platelet cytoskeleton formation. The present study explored the direct association of membrane-bound fibrinogen with the Triton X-100 (Sigma Chemical Co, St Louis, MO) insoluble cytoskeleton of aspirin-treated, gel-filtered platelets, activated but not aggregated with 20 mumol/L adenosine diphosphate (ADP) or 150 mU/mL human thrombin (THR) when bound fibrinogen had become resistant to dissociation by EDTA. Conversion of exogenous 125I-fibrinogen to fibrin was prevented by adding Gly-Pro-Arg and neutralizing THR with hirudin before initiating binding studies. After 60 minutes at 22 degrees C, the cytoskeleton of ADP-treated platelets contained 20% +/- 12% (mean +/- SD, n = 14) of membrane-bound 125I-fibrinogen, representing 10% to 50% of EDTA- resistant fibrinogen binding. The THR-activated cytoskeleton contained 45% +/- 15% of platelet bound fibrinogen, comprising 80% to 100% of EDTA-resistant fibrinogen binding. 125I-fibrinogen was not recovered with platelet cytoskeletons if binding was inhibited by the RGDS peptide, excess unlabeled fibrinogen, or disruption of the glycoprotein (GP) IIb-IIIa complex by EDTA-treatment. Both development of EDTA- resistant fibrinogen binding and fibrinogen association with the cytoskeleton were time dependent and reached maxima 45 to 60 minutes after fibrinogen binding to stimulated platelets. Although a larger cytoskeleton formed after platelet stimulation with thrombin as compared with ADP, no change in cytoskeleton composition was noted with development of EDTA-resistant fibrinogen binding. Examination of platelet cytoskeletons using monoclonal antibodies, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blotting showed the presence of only traces of GP IIb-IIIa in the cytoskeletons of resting platelets, with no detectable increases after platelet activation or development of EDTA-resistant fibrinogen binding. These data suggest that GP IIb-IIIa-mediated fibrinogen binding to activated platelets is accompanied by time-dependent alterations in platelet- fibrinogen interactions leading to the GP IIb-IIIa independent association between bound fibrinogen and the platelet cytoskeleton.


1980 ◽  
Vol 239 (6) ◽  
pp. G452-G456
Author(s):  
R. C. Beesley ◽  
C. D. Bacheller

Brush-border membrane vesicles from hamster intestine were employed to investigate uptake (binding) of vitamin B12 (B12). Ileal vesicles took up 25 times more B12 than did jejunal vesicles. Uptake of B12 by ileal vesicles was dependent on intrinsic factor (IF) and required Ca2+. Increasing the Ca2+ concentration caused an increase in uptake of B12 reaching a maximum at approximately 8 mM Ca2+. At high Ca2+ concentrations, 6–8 mM, Mg2+ had little effect on uptake of B12. At low Ca2+ concentrations, up to 2 mM, Mg2+ stimulated B12 uptake. Mg2+, Mn2+, and, to a lesser extent, Sr2+ stimulated Ca2+-dependent B12 uptake, but Zn2+, Ba2+, Na+, K+, and La3+ did not. B12 was apparently not metabolized and was bound as IF-B12 complex, which could be removed with (ethylenedinitrilo)tetraacetic acid (EDTA). Our results suggest that two types of divalent cation reactive sites are involved in binding of IF-B12. One is Ca2+ specific. The other is less specific reacting with Mg2+, Mn2+, Sr2+, and perhaps Ca2+ itself, thereby stimulating Ca2+-dependent binding of IF-B12 to its ileal receptor.


1975 ◽  
Vol 66 (1) ◽  
pp. 198-200 ◽  
Author(s):  
D Mazia ◽  
G Schatten ◽  
W Sale

Cells of many kinds adhere firmly to glass or plastic surfaces which have been pretreated with polylysine. The attachment takes place as soon as the cells make contact with the surfaces, and the flattening of the cells against the surfaces is quite rapid. Cells which do not normally adhere to solid surfaces, such as sea urchin eggs, attach as well as cells which normally do so, such as amebas or mammalian cells in culture. The adhesion is interpreted simply as the interaction between the polyanionic cell surfaces and the polycationic layer of adsorbed polylysine. The attachment of cells to the polylysine-treated surfaces can be exploited for a variety of experimental manipulations. In the preparation of samples for scanning or transmission electron microscopy, the living material may first be attached to a polylysine-coated plate or grid, subjected to some experimental treatment (fertilization of an egg, for example), then transferred rapidly to fixative and further passed through processing for observation; each step involves only the transfer of the plate or grid from one container to the next. The cells are not detached. The adhesion of the cell may be so firm that the body of the cell may be sheared away, leaving attached a patch of cell surface, face up, for observation of its inner aspect. For example, one may observe secretory vesicles on the inner face of the surface (3) or may study the association of filaments with the inner surface (Fig. 1). Subcellular structures may attach to the polylysine-coated surfaces. So far, we have found this to be the case for nuclei isolated from sea urchin embryos and for the microtubules of flagella, which are well displayed after the membrane has been disrupted by Triton X-100 (Fig. 2).


1997 ◽  
Vol 110 (13) ◽  
pp. 1465-1475
Author(s):  
S. Seveau ◽  
S. Lopez ◽  
P. Lesavre ◽  
J. Guichard ◽  
E.M. Cramer ◽  
...  

We investigated a possible association of leukosialin (CD43), the major surface sialoglycoprotein of leukocytes, with neutrophil cytoskeleton. We first analysed the solubility of CD43 in Triton X-100 and observed that CD43 of resting neutrophils was mostly soluble. The small proportion of CD43 molecules, which ‘spontaneously’ precipitated in Triton, appeared associated with F-actin, as demonstrated by the fact that this insolubility did not occur when cells were incubated with cytochalasin B or when F-actin was depolymerized with DNase I in the Triton precipitate. Cell stimulation with anti-CD43 mAb (MEM59) enhanced this CD43-cytoskeleton association. By immunofluorescence as well as by electron microscopy, we observed a redistribution of CD43 on the neutrophil membrane, initially in patches followed by caps, during anti-CD43 cross-linking at 37 degrees C. This capping did not occur at 4 degrees C and was inhibited by cytochalasin B and by a myosin disrupting drug butanedione monoxime, thus providing evidence that the actomyosin contracile sytem is involved in the capping and further suggesting an association of CD43 with the cytoskeleton. Some of the capped cells exhibited a front-tail polarization with CD43 caps located in the uropod at the rear of the cell. Surprisingly, colchicine and the chemotactic factor fNLPNTL which induce neutrophil polarization associated with cell motility, also resulted in a clustering of CD43 in the uropod, independently of a cross-linking of the molecule by mAbs. An intracellular redistribution of F-actin, mainly at the leading front and of myosin in the tail, was observed during CD43 clustering induced by colchicine and in cells polarized by anti-CD43 mAbs cross-linking. We conclude that neutrophil CD43 interacts with the cytoskeleton, either directly or indirectly, to redistribute in the cell uropod under antibodies stimulation or during cell polarization by colchicine, thus highly suggesting that CD43 may be involved in cell polarization.


1984 ◽  
Vol 222 (1229) ◽  
pp. 427-438 ◽  

Silicified macrohairs from mature and immature lemmas of the grass Phalaris canariensis L. have been studied by scanning (s.e.m.) and transmission electron microscopy (t.e.m.) and energy dispersive X-ray analysis (e.d.X.a.) at various times after emergence of the inflorescence. Within the macrohairs a variety of morphologies of silica particles was observed. E.d.X.a. revealed the time-dependent concentrations in the macrohairs of the elements K, Cl, P, and S, in addition to Si. Much lower levels of these elements were found in highly silicified mature macrohairs than in the immature macrohairs. It is proposed that the hairs are silicified under strict cellular control.


1978 ◽  
Vol 235 (5) ◽  
pp. E539 ◽  
Author(s):  
M W Walling ◽  
A K Mircheff ◽  
C H Van Os ◽  
E M Wright

The subcellular distributions of adenylate cyclase and guanylate cyclase were determined for the mature enterocyte from the rat duodenum. Brush-border and basolateral membranes were prepared from isolated cells by an analytical isolation procedure, and multiple linear regression analysis was used to obtain a quantitative estimate of the distribution of recovered cyclase activities between the brush borders and basolateral membranes. Adenylate cyclase was largely confined to the basolateral surface of the epithelium, whereas guanylate cyclase was found on the brush-border and basolateral membrane fractions in the ratio 2.4:1. There was no evidence for the presence of nucleotide cyclases in the cytosol. Guanylate cyclase in both the brush-border and basolateral membranes was stimulated by epinephrine, insulin, and Triton X-100, but not by carbachol. Adenylate cyclase was not influenced by epinephrine, but was markedly stimulated by NaF and vasoactive intestinal peptide. These results are discussed in relation to the effects of hormones on transport across the small intestine.


1978 ◽  
Vol 77 (3) ◽  
pp. R27 ◽  
Author(s):  
M Osborn ◽  
RE Webster ◽  
K Weber

PtK2 cells were grown on gold grids and treated with Triton X-100 in a microtubule stabilizing buffer. The resulting cytoskeletons were fixed with glutaraldehyde and subjected to the indirect immunofluorescence procedure using monospecific tubulin antibodies. Grids were examined first by fluorescence microscopy, and the display of fluorescent cytoplasmic microtubules was recorded. The grids were then stained with uranyl acetate and the display of fibrous structures recorded by electron microscopy. Thus the display of cytoplasmic microtubular structures in the light microscope and the electron microscope can be compared within the same cytoskeleton. The results show a direct correspondence of the fluorescent fibers in the light microscope with uninterrupted fibers of diameter approximately 550 A in the electron microscope. This is the diameter reported for a single microtubule decorated around its circumference by two layers of antibody molecules. Thus under optimal conditions immunofluorescence microscopy can visualize individual microtubules.


1992 ◽  
Vol 263 (2) ◽  
pp. H410-H417 ◽  
Author(s):  
J. Wu ◽  
P. B. Corr

Long-chain acylcarnitines (LCAC) increase 3.5-fold within 2 min in ischemic myocardium in vivo, and previous studies have suggested, through indirect evidence, that LCAC can stimulate the voltage-dependent L-type Ca2+ current [ICa(L)] in both cardiac and smooth muscle cells. In the present study, whole cell voltage-clamp procedures were performed in isolated adult guinea pig ventricular myocytes to assess the direct effect of LCAC on ICa(L). The intracellular solution contained (in mM) 80 CsCl, 40 K-aspartic acid, and 5 ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). Maximal current density of ICa(L) at 0 mV was 10.1 +/- 0.5 pA/pF (n = 22) at extracellular Ca2+ concentration ([Ca2+]o) = 2.7 mM. LCAC induced a concentration (1-25 microM, n = 23)- and time-dependent, reversible decrease in ICa(L). When delivered extracellularly for 10 min, LCAC (5 microM) inhibited the maximal current of ICa(L) by 48.1 +/- 1.3% (n = 9, P less than 0.01) and shifted the half-maximal voltage of steady-state activation and inactivation from -13.1 +/- 0.5 to -6.8 +/- 0.4 mV (n = 4; P less than 0.05) and from -21.8 +/- 0.2 to -16.5 +/- 0.6 mV (n = 4; P less than 0.01), respectively. Intracellular delivery of LCAC (5 microM) also suppressed ICa(L) to a similar degree (47.5 +/- 1.5%, n = 4; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (4) ◽  
pp. C535-C540 ◽  
Author(s):  
S. S. Craig ◽  
J. F. Reckelhoff ◽  
J. S. Bond

An inherited deficiency of a metalloendopeptidase (meprin) activity occurs in kidneys of many inbred mouse strains. To clarify whether meprin protein is present in low-activity strains and determine the distribution of meprin in kidneys of mice with high- and low-meprin activities, kidney slices were stained through the use of the indirect immunoperoxidase technique and examined by light and electron microscopy. Light microscopy at high dilutions of anti-meprin IgG confirmed the brush border localization of meprin in high-meprin activity strains and revealed no detectable cross-reactive material in low-meprin activity strains. However, light and electron microscopy studies that use lower dilutions of anti-meprin immunoglobulin G (IgG) revealed cross-reactivity in low-activity strains, also at the luminal surface of the proximal tubules. Studies at lower magnifications indicated that meprin is primarily associated with the juxtamedullary region of the kidney in both high- and low-activity strains. Western blots of urinary proteins showed significant amounts of meprin-like proteins, but only in the urine of mice with high-meprin activity. The low activity of meprin in some inbred mouse strains is not associated with the presence of the protein in compartments of kidney cells other than the brush border or with secretion of the protein into the urine.


Sign in / Sign up

Export Citation Format

Share Document