Adaptation of the skeletal muscle calcium-release mechanism to weight-bearing condition

1996 ◽  
Vol 270 (6) ◽  
pp. C1588-C1594 ◽  
Author(s):  
S. C. Kandarian ◽  
D. G. Peters ◽  
T. G. Favero ◽  
C. W. Ward ◽  
J. H. Williams

In the present study, we examined whether weight-bearing condition can regulate the sarcoplasmic reticulum (SR) Ca(2+)-release mechanism. Measurements of alpha 1-subunit dihydropyridine (alpha 1-DHP) and ryanodine receptor levels were made in hypertrophied fast-twitch plantaris muscles 5 wk after surgical removal of synergist muscles (increased weight bearing) and in atrophied slowtwitch soleus muscles (14 days of non-weight bearing) of the rat. Rates of AgNO3-induced SR Ca2+ release were measured with fura 2 as the Ca2+ indicator and pyrophosphate as the precipitating ion during vesicular Ca2+ loading. Ca(2+)-release rates were 38, 49, and 58% lower in vesicles from hypertrophied vs. control muscles at AgNO3 concentrations of 0.05, 0.5, and 5 microM, respectively (control = 18.2 +/- 1.4 microM.mg-1. min-1). Western blots showed no differences in the relative expression of alpha 1-DHP or ryanodine receptor when IIID5 (monoclonal) or GP3 (polyclonal) antibodies were used. There was also no difference in ryanodine (10 nM) binding in Ca(2+)-incubated SR vesicles from hypertrophied muscles, suggesting no difference in the number of channels. In contrast, expression of alpha 1-DHP and ryanodine receptors was increased by 144 and 157% in non-weight-bearing soleus muscles, respectively. Scatchard analysis of DHP binding showed a 40% increase in maximum binding capacity and no change in the dissociation constant with non-weight-bearing muscles. The direction of modification of the SR Ca(2+)-release mechanism is opposite with increased and decreased weight bearing, but the mechanism by which this is achieved appears to be different.

2000 ◽  
Vol 349 (1) ◽  
pp. 323-332 ◽  
Author(s):  
François-Xavier BOITTIN ◽  
Frédéric COUSSIN ◽  
Jean-Luc MOREL ◽  
Guillaume HALET ◽  
Nathalie MACREZ ◽  
...  

Localized Ca2+-release signals (puffs) and propagated Ca2+ waves were characterized in rat ureteric myocytes by confocal microscopy. Ca2+ puffs were evoked by photorelease of low concentrations of Ins(1,4,5)P3 from a caged precursor and by low concentrations of acetylcholine; they were also observed spontaneously in Ca2+-overloaded myocytes. Ca2+ puffs showed some variability in amplitude, time course and spatial spread, suggesting that Ins(1,4,5)P3-gated channels exist in clusters containing variable numbers of channels and that within these clusters a variable number of channels can be recruited. Immunodetection of Ins(1,4,5)P3 receptors revealed the existence of several spots of fluorescence in the confocal cell sections, supporting the existence of clusters of Ins(1,4,5)P3 receptors. Strong Ins(1,4,5)P3 photorelease and high concentrations of acetylcholine induced Ca2+ waves that originated from an initiation site and propagated in the whole cell by spatial recruitment of neighbouring Ca2+-release sites. Both Ca2+ puffs and Ca2+ waves were blocked selectively by intracellular applications of heparin and an anti-Ins(1,4,5)P3-receptor antibody, but were unaffected by ryanodine and intracellular application of an anti-ryanodine receptor antibody. mRNAs encoding for the three subtypes of Ins(1,4,5)P3 receptor and subtype 3 of ryanodine receptor were detected in these myocytes, and the maximal binding capacity of [3H]Ins(1,4,5)P3 was 10- to 12-fold higher than that of [3H]ryanodine. These results suggest that Ins(1,4,5)P3-gated channels mediate a continuum of Ca2+ signalling in smooth-muscle cells expressing a high level of Ins(1,4,5)P3 receptors and no subtypes 1 and 2 of ryanodine receptors.


1997 ◽  
Vol 322 (1) ◽  
pp. 327-333 ◽  
Author(s):  
Romeo BETTO ◽  
Alessandra TERESI ◽  
Federica TURCATO ◽  
Giovanni SALVIATI ◽  
Roger A. SABBADINI ◽  
...  

Sphingosylphosphocholine (SPC) modulates Ca2+ release from isolated cardiac sarcoplasmic reticulum membranes; 50 ƁM SPC induces the release of 70Ő80% of the accumulated calcium. SPC releases calcium from cardiac sarcoplasmic reticulum through the ryanodine receptor, since the release is inhibited by the ryanodine receptor channel antagonists ryanodine, Ruthenium Red and sphingosine. In intact cardiac myocytes, even in the absence of extracellular calcium, SPC causes a rise in diastolic Ca2+, which is greatly reduced when the sarcoplasmic reticulum is depleted of Ca2+ by prior thapsigargin treatment. SPC action on the ryanodine receptor is Ca2+-dependent. SPC shifts to the left the Ca2+-dependence of [3H]ryanodine binding, but only at high pCa values, suggesting that SPC might increase the sensitivity to calcium of the Ca2+-induced Ca2+-release mechanism. At high calcium concentrations (pCa 4.0 or lower), where [3H]ryanodine binding is maximally stimulated, no effect of SPC is observed. We conclude that SPC releases calcium from cardiac sarcoplasmic reticulum membranes by activating the ryanodine receptor and possibly another intracellular Ca2+-release channel, the sphingolipid Ca2+-release-mediating protein of endoplasmic reticulum (SCaMPER) [Mao, Kim, Almenoff, Rudner, Kearney and Kindman (1996) Proc. Natl. Acad. Sci. U.S.A 93, 1993Ő1996], which we have identified for the first time in cardiac tissue.


2013 ◽  
Vol 304 (3) ◽  
pp. C280-C286 ◽  
Author(s):  
Guillermo J. Pérez ◽  
Mayurika Desai ◽  
Seth Anderson ◽  
Fabiana S. Scornik

We studied principal neurons from canine intracardiac (IC) ganglia to determine whether large-conductance calcium-activated potassium (BK) channels play a role in their excitability. We performed whole cell recordings in voltage- and current-clamp modes to measure ion currents and changes in membrane potential from isolated canine IC neurons. Whole cell currents from these neurons showed fast- and slow-activated outward components. Both current components decreased in the absence of calcium and following 1–2 mM tetraethylammonium (TEA) or paxilline. These results suggest that BK channels underlie these current components. Single-channel analysis showed that BK channels from IC neurons do not inactivate in a time-dependent manner, suggesting that the dynamic of the decay of the fast current component is akin to that of intracellular calcium. Immunohistochemical studies showed that BK channels and type 2 ryanodine receptors are coexpressed in IC principal neurons. We tested whether BK current activation in these neurons occurred via a calcium-induced calcium release mechanism. We found that the outward currents of these neurons were not affected by the calcium depletion of intracellular stores with 10 mM caffeine and 10 μM cyclopiazonic acid. Thus, in canine intracardiac neurons, BK currents are directly activated by calcium influx. Membrane potential changes elicited by long (400 ms) current injections showed a tonic firing response that was decreased by TEA or paxilline. These data strongly suggest that the BK current present in canine intracardiac neurons regulates action potential activity and could increase these neurons excitability.


1999 ◽  
Vol 276 (4) ◽  
pp. H1131-H1136
Author(s):  
Guillaume Halet ◽  
Patricia Viard ◽  
Jean-Luc Morel ◽  
Jean Mironneau ◽  
Chantal Mironneau

Effects of a 14-day hindlimb suspension were examined on [3H]ryanodine binding to rat ventricular microsomes and on cytosolic Ca2+ concentration ([Ca2+]i) and voltage-dependent Ca2+channels in isolated ventricular myocytes. In suspended rats, the amplitude of the twitch [Ca2+]itransient was increased without significant modifications of the basal [Ca2+]iand sarcoplasmic reticulum content. Because cell capacitance, L-type Ca2+-current density, and Ca2+-channel gating were not significantly modified after suspension, the increase in [Ca2+]iwas expected to reside in a change in ryanodine receptors. Scatchard analysis of [3H]ryanodine binding revealed that suspension enhanced binding by increasing the affinity of the receptors for [3H]ryanodine without affecting the maximal binding capacity. Both Ca2+-release channel activity and [3H]ryanodine binding are modulated by Ca2+. However, the Ca2+ sensitivity of [3H]ryanodine binding remained unchanged after suspension. Taken together, these results suggest that the increase in twitch [Ca2+]itransients after suspension may result from a change in the intrinsic properties of the ryanodine receptors but not from a change in the expression level of these receptors.


1988 ◽  
Vol 92 (1) ◽  
pp. 1-26 ◽  
Author(s):  
J S Smith ◽  
T Imagawa ◽  
J Ma ◽  
M Fill ◽  
K P Campbell ◽  
...  

The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 27
Author(s):  
David Y. Chiang ◽  
Satadru Lahiri ◽  
Guoliang Wang ◽  
Jason Karch ◽  
Meng C. Wang ◽  
...  

Hyperphosphorylation of the calcium release channel/ryanodine receptor type 2 (RyR2) at serine 2814 (S2814) is associated with multiple cardiac diseases including atrial fibrillation and heart failure. Despite recent advances, the molecular mechanisms driving pathological changes associated with RyR2 S2814 phosphorylation are still not well understood. Methods: Using affinity-purification coupled to mass spectrometry (AP-MS), we investigated the RyR2 interactome in ventricles from wild-type (WT) mice and two S2814 knock-in mutants: the unphosphorylated alanine mutant (S2814A) and hyperphosphorylated mimic aspartic acid mutant (S2814D). Western blots were used for validation. Results: In WT mouse ventricular lysates, we identified 22 proteins which were enriched with RyR2 pull-down relative to both IgG control and no antibody (beads-only) pull-downs. Parallel AP-MS using WT, S2814A, and S2814D mouse ventricles identified 72 proteins, with 20 being high confidence RyR2 interactors. Of these, 14 had an increase in their binding to RyR2 S2814A but a decrease in their binding to RyR2 S2814D. We independently validated three protein hits, Idh3b, Aifm1, and Cpt1b, as RyR2 interactors by western blots and showed that Aifm1 and Idh3b had significantly decreased binding to RyR2 S2814D compared to WT and S2814A, consistent with MS findings. Conclusion: By applying state-of-the-art proteomic approaches, we discovered a number of novel RyR2 interactors in the mouse heart. In addition, we found and defined specific alterations in the RyR2 interactome that were dependent on the phosphorylation status of RyR2 at S2814. These findings yield mechanistic insights into RyR2 regulation which may guide future drug designs.


1995 ◽  
Vol 128 (5) ◽  
pp. 893-904 ◽  
Author(s):  
G Giannini ◽  
A Conti ◽  
S Mammarella ◽  
M Scrobogna ◽  
V Sorrentino

Ryanodine receptors (RyRs) are intracellular calcium release channels that participate in controlling cytosolic calcium levels. At variance with the probably ubiquitous inositol 1,4,5-trisphosphate-operated calcium channels (1,4,5-trisphosphate receptors), RyRs have been mainly regarded as the calcium release channels controlling skeletal and cardiac muscle contraction. Increasing evidence has recently suggested that RyRs may be more widely expressed, but this has never been extensively examined. Therefore, we cloned three cDNAs corresponding to murine RyR homologues to carry a comprehensive analysis of their expression in murine tissues. Here, we report that the three genes are expressed in almost all tissues analyzed, where tissue-specific patterns of expression were observed. In the uterus and vas deferens, expression of RyR3 was localized to the smooth muscle component of these organs. In the testis, expression of RyR1 and RyR3 was detected in germ cells. RyR mRNAs were also detected in in vitro-cultured cell lines. RyR1, RyR2, and RyR3 mRNA were detected in the cerebrum and in the cerebellum. In situ analysis revealed a cell type-specific pattern of expression in the different regions of the central nervous system. The differential expression of the three ryanodine receptor genes in the central nervous system was also confirmed using specific antibodies against the respective proteins. This widespread pattern of expression suggests that RyRs may participate in the regulation of intracellular calcium homeostasis in a range of cells wider than previously recognized.


2001 ◽  
Vol 114 (17) ◽  
pp. 3167-3176
Author(s):  
Michael S. Kapiloff ◽  
Nicole Jackson ◽  
Nathan Airhart

The physical association of regulatory enzymes and ion channels at relevant intracellular sites contributes to the diversity and specificity of second messenger-mediated signal transduction in cells. mAKAP is a scaffolding protein that targets the cAMP-dependent protein kinase A and phosphodiesterase type 4D3 to the nuclear envelope of differentiated cardiac myocytes. Here we present data that the mAKAP signaling complex also includes nuclear envelope-resident ryanodine receptors and protein phosphatase 2A. The ryanodine receptor is the major cardiac ion channel responsible for calcium-induced calcium release from intracellular calcium ion stores. As demonstrated by a combination of immunohistochemistry and tissue fractionation, mAKAP is targeted specifically to the nuclear envelope, whereas the ryanodine receptor is present at both the sarcoplasmic reticulum and nuclear envelope intracellular membrane compartments. At the nuclear envelope, a subset of cardiac ryanodine receptor is bound to mAKAP and via the association with mAKAP may be regulated by protein kinase A-mediated phosphorylation. By binding protein kinase A and ryanodine receptor, mAKAP may serve as the scaffold for a cAMP- and calcium ion-sensitive signaling complex.


1988 ◽  
Vol 253 (3) ◽  
pp. 631-636 ◽  
Author(s):  
M Michalak

Ca2+-induced Ca2+ release and pH-induced Ca2+ release activities were identified in sarcoplasmic-reticulum (SR) vesicles isolated from adult- and fetal-sheep hearts. Ca2+-induced Ca2+ release and pH-induced Ca2+ release appear to proceed via the same channels, since both phenomena are similarly inhibited by Ruthenium Red. Ca2+ release from fetal SR vesicles is inhibited by higher concentrations of Ruthenium Red than is that from adult membranes. Both fetal and adult SR vesicles bind ryanodine. Fetal SR shows higher ryanodine-binding capacity than adult SR vesicles. Scatchard analysis of ryanodine binding revealed only one high-affinity binding site (Kd 6.7 nM) in fetal SR vesicles compared with two distinct binding sites (Kd 6.6 and 81.5 nM) in the adult SR vesicles. SR vesicles isolated from fetal and adult hearts were separated on discontinuous sucrose gradients into light (free) and heavy (junctional) SR vesicles. Heavy SR vesicles isolated from adult hearts exhibited most of the Ca2+ release activities. In contrast, Ca2+-induced Ca2+ release, pH-induced Ca2+ release and ryanodine receptors were detected in both light and heavy fetal SR. These results suggest that fetal SR may not be morphologically and functionally as well differentiated as that of adult cardiac muscle and that it may contain a greater number of Ca2+-release channels than that present in adult SR membranes.


2012 ◽  
Vol 112 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Fabrice Dabertrand ◽  
Yves Porte ◽  
Nathalie Macrez ◽  
Jean-Luc Morel

Gravity has a structural role for living systems. Tissue development, architecture, and organization are modified when the gravity vector is changed. In particular, microgravity induces a redistribution of blood volume and thus pressure in the astronaut body, abolishing an upright blood pressure gradient, inducing orthostatic hypotension. The present study was designed to investigate whether isolated vascular smooth muscle cells are directly sensitive to altered gravitational forces and, second, whether sustained blood pressure changes act on the same molecular target. Exposure to microgravity during 8 days in the International Space Station induced the decrease of ryanodine receptor subtype 1 expression in primary cultured myocytes from rat hepatic portal vein. Identical results were found in portal vein from mice exposed to microgravity during an 8-day shuttle spaceflight. To evaluate the functional consequences of this physiological adaptation, we have compared evoked calcium signals obtained in myocytes from hindlimb unloaded rats, in which the shift of blood pressure mimics the one produced by the microgravity, with those obtained in myocytes from rats injected with antisense oligonucleotide directed against ryanodine receptor subtype 1. In both conditions, calcium signals implicating calcium-induced calcium release were significantly decreased. In contrast, in spontaneous hypertensive rat, an increase in ryanodine receptor subtype 1 expression was observed as well as the calcium-induced calcium release mechanism. Taken together, our results shown that myocytes were directly sensitive to gravity level and that they adapt their calcium signaling pathways to pressure by the regulation of the ryanodine receptor subtype 1 expression.


Sign in / Sign up

Export Citation Format

Share Document