Cloning and characterization of fiber type-specific ryanodine receptor isoforms in skeletal muscles of fish

1998 ◽  
Vol 275 (2) ◽  
pp. C401-C415 ◽  
Author(s):  
Jens P. C. Franck ◽  
Jeffery Morrissette ◽  
John E. Keen ◽  
Richard L. Londraville ◽  
Mark Beamsley ◽  
...  

We have cloned a group of cDNAs that encodes the skeletal ryanodine receptor isoform (RyR1) of fish from a blue marlin extraocular muscle library. The cDNAs encode a protein of 5,081 amino acids with a calculated molecular mass of 576,302 Da. The deduced amino acid sequence shows strong sequence identity to previously characterized RyR1 isoforms. An RNA probe derived from a clone of the full-length marlin RyR1 isoform hybridizes to RNA preparations from extraocular muscle and slow-twitch skeletal muscle but not to RNA preparations from fast-twitch skeletal or cardiac muscle. We have also isolated a partial RyR clone from marlin and toadfish fast-twitch muscles that shares 80% sequence identity with the corresponding region of the full-length RyR1 isoform, and a RNA probe derived from this clone hybridizes to RNA preparations from fast-twitch muscle but not to slow-twitch muscle preparations. Western blot analysis of slow-twitch muscles in fish indicates the presence of only a single high-molecular-mass RyR protein corresponding to RyR1. [3H]ryanodine binding assays revealed the fish slow-twitch muscle RyR1 had a greater sensitivity for Ca2+ than the fast-twitch muscle RyR1. The results indicate that, in fish muscle, fiber type-specific RyR1 isoforms are expressed and the two proteins are physiologically distinct.

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


2003 ◽  
Vol 81 (1) ◽  
pp. 28-39 ◽  
Author(s):  
Daniel A. von Deutsch ◽  
Imad K Abukhalaf ◽  
Lawrence E Wineski ◽  
Natalia A Silvestrov ◽  
Mohamed A Bayorh ◽  
...  

Anabolic agents such clenbuterol (Cb) are useful tools for probing the mechanisms by which muscles respond to disuse. Cb was examined under different loading conditions with respect to its effects on muscle mass, protein (myofibrillar and cytosolic), and spermidine content in mature male rats. Compared with control treatment, Cb significantly increased loaded and unloaded soleus, plantaris, and extensor digitorum longus (EDL) mass. Likewise, Cb significantly increased loaded and unloaded soleus (24.8 and 21.6%, respectively), plantaris (12.1 and 22.9%, respectively), and EDL (22.4 and 13.3%, respectively) myofibrillar protein content. After unloading, cytosolic proteins significantly increased in the EDL but decreased in the soleus and plantaris. Cb significantly increased cytosolic protein levels in all loaded muscles, while only causing increases in unloaded soleus. When compared with controls, unloading caused significant reductions in spermidine levels in the soleus (40.4%) and plantaris (35.9%) but caused increases in the EDL (54.8%). In contrast, Cb increased spermidine levels in unloaded soleus (42.9%), plantaris (102.8%), and EDL (287%). In loaded muscles, Cb increased spermidine levels in all three muscles, but to a lesser degree than under unloading conditions. Nonlinear regression analyses indicated that the plantaris behaves like a slow-twitch muscle under unloading conditions and like a fast-twitch muscle when loaded. This suggests that the responses of these muscles to unloading and (or) Cb treatment might be influenced by factors beyond fiber type alone.Key words: microgravity, skeletal muscle atrophy, nonlinear regression, clenbuterol, polyamines.


1987 ◽  
Vol 253 (3) ◽  
pp. C426-C432 ◽  
Author(s):  
D. M. Whitlock ◽  
R. L. Terjung

Rat slow-twitch muscle, in contrast to fast-twitch muscle, maintains its ATP content near normal during intense stimulation conditions that produce rapid fatigue. An extensive depletion of adenine nucleotide content by the deamination of AMP to IMP + NH3, typical of fast-twitch muscle, does not occur. We evaluated whether this response of slow-twitch muscle could be simply due to failure of synaptic transmission or related to cellular conditions influencing enzyme activity. Stimulation of soleus muscles in situ via the nerve or directly in the presence of curare at 120 tetani/min for 3 min resulted in extensive fatigue but normal ATP contents. Thus the lack of ATP depletion must be related to cellular events distal to neuromuscular transmission. Even nerve and direct muscle stimulation (with curare) during ischemia did not cause a large depletion of ATP or a large elevation of lactate content (12.0 +/- 0.7 mumol/g), even though the decline in tension was essentially complete. However, if the same tension decline during ischemia was prolonged by stimulating for 10 min at 12 tetani/min a large decrease in ATP (2.24 +/- 0.09 mumol/g) and increase in IMP (2.47 +/- 0.16 mumol/g) and lactate (30.4 +/- 2.0 mumol/g) content occurred. Thus adenine nucleotide deamination to IMP can occur in slow-twitch muscle during specific contraction conditions. The cellular events leading to the activation of AMP deaminase require an intense contraction condition and may be related to acidosis caused by a high lactate content.


1993 ◽  
Vol 264 (5) ◽  
pp. R867-R870
Author(s):  
C. Huchet ◽  
C. Leoty

The properties of the contractile system at different times of the year in the ferret extensor digitorum longus (EDL), soleus and cremaster muscles were examined by using chemically skinned (Triton X-100) preparations. The results show clear differences in calcium sensitivity between these skeletal muscles. The apparent calcium threshold for activation was lower in soleus than in EDL, while calcium concentrations ([Ca2+]) required to obtain the half-maximal tension, expressed as pCa50 (-log[Ca2+]), was lower in EDL than in soleus muscle. In fact, pCa50 obtained in fast and slow fibers by fitting the experimental data points by a modified Hill equation was 5.92 +/- 0.02 (n = 9) and 6.09 +/- 0.03 (n = 11) respectively. So EDL appears to be a typical fast-twitch muscle and soleus a typical slow-twitch muscle. Adult ferret cremaster muscle was composed of two types of fibers during the quiescent period similar to EDL and soleus, and only one type that was intermediate between EDL and soleus in the breeding period, as assessed by pCa50 values. These annual modifications in calcium activation of adult ferret cremaster muscle could be related to changes in the function of these muscles and may be correlated with seasonal variations of sexual activity.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1475
Author(s):  
Milan Holeček ◽  
Melita Vodeničarovová ◽  
Radana Fingrová

Beta-hydroxy-beta-methyl butyrate (HMB) is a unique product of leucine catabolism with positive effects on protein balance. We have examined the effects of HMB (200 mg/kg/day via osmotic pump for 7 days) on rats with diabetes induced by streptozotocin (STZ, 100 mg/kg intraperitoneally). STZ induced severe diabetes associated with muscle wasting, decreased ATP in the liver, and increased α-ketoglutarate in muscles. In plasma, liver, and muscles increased branched-chain amino acids (BCAAs; valine, isoleucine, and leucine) and decreased serine. The decreases in mass and protein content of muscles and increases in BCAA concentration were more pronounced in extensor digitorum longus (fast-twitch muscle) than in soleus muscle (slow-twitch muscle). HMB infusion to STZ-treated animals increased glycemia and serine in the liver, decreased BCAAs in plasma and muscles, and decreased ATP in the liver and muscles. The effects of HMB on the weight and protein content of tissues were nonsignificant. We concluded that fast-twitch muscles are more sensitive to STZ than slow-twitch muscles and that HMB administration to STZ-treated rats has dual effects. Adjustments of BCAA concentrations in plasma and muscles and serine in the liver can be considered beneficial, whereas the increased glycemia and decreased ATP concentrations in the liver and muscles are detrimental.


2002 ◽  
Vol 282 (4) ◽  
pp. R1164-R1173 ◽  
Author(s):  
Sophie Talon ◽  
Olivier Vallot ◽  
Corinne Huchet-Cadiou ◽  
Anne-Marie Lompré ◽  
Claude Léoty

The present study was designed to examine whether changes in Ca2+ release by inositol-1,4,5-trisphosphate (IP3) in 8-, 15-, and 30-day-old rat skeletal muscles could be associated with the expression of IP3 receptors. Experiments were conducted in slow-twitch muscle in which both IP3-induced Ca2+ release and IP3-receptor (IP3R) expression have been shown to be larger than in fast-twitch muscle. In saponin-skinned fibers, IP3 induced transient contractile responses in which the amplitude was dependent on the Ca2+-loading period with the maximal IP3 contracture being at 20 min of loading. The IP3 tension decreased during postnatal development, was partially inhibited by ryanodine (100 μM), and was blocked by heparin (20–400 μg/ml). Amplification of the DNA sequence encoding for IP3R isoforms (using the RT-PCR technique) showed that in slow-twitch muscle, the type 2 isoform is mainly expressed, and its level decreases during postnatal development in parallel with changes in IP3 responses in immature fibers. IP3-induced Ca2+ release would then have greater participation in excitation-contraction coupling in developing fibers than in mature muscle.


1996 ◽  
Vol 271 (4) ◽  
pp. C1250-C1255 ◽  
Author(s):  
M. Wada ◽  
T. Okumoto ◽  
K. Toro ◽  
K. Masuda ◽  
T. Fukubayashi ◽  
...  

Myosin of human skeletal muscles was analyzed by means of several electrophoretic techniques. Myosin heavy chain (HC)-IIa-and HC-IIb-based isomyosins were identified by pyrophosphate-polyacrylamide gel electrophoresis (PP-PAGE). The electrophoretic mobilities of these fast-twitch muscle isomyosins differed in the order HC-IIa triplets < HC-IIb triplets. To determine the subunit composition of myosin molecules that function in intact muscle, two-dimensional electrophoresis in which the first and second dimensions were PP-PAGE and sodium dodecyl sulfate-PAGE, respectively, was also performed. Slow-twitch muscle isomyosin contained, in addition to slow-twitch light chain (LC) and HC-I isoforms, appreciable amounts of LC-2f, HC-IIa, and HC-IIb isoforms, and fast-twitch muscle isomyosin consisted of LC-2s and HC-I isoforms as well as fast-twitch LC and HC isoforms. Without consideration of HC- and slow-twitch alkali LC heterodimers, at least 31 possible isomyosins are derived from these findings on the subunit composition of isomyosins in human skeletal muscle.


1992 ◽  
Vol 262 (5) ◽  
pp. C1239-C1245 ◽  
Author(s):  
N. C. Millar ◽  
E. Homsher

The kinetics of the force generating and Pi release steps of the actomyosin-adenosinetriphosphatase (ATPase) cycle have been compared in Ca(2+)-activated skinned fibers of rabbit soleus (slow twitch) and psoas (fast twitch) muscle. Pi was rapidly photogenerated within the fiber lattice by laser flash photolysis of caged Pi [1-(2-nitro)phenylethyl phosphate]. Pi reduces isometric tension in the steady state but is less effective in slow-twitch muscle than in fast-twitch muscle (e.g., 14 mM Pi reduces tension by 29 +/- 4.6% in slow and by 47 +/- 5.3% in fast). The tension response to a sudden increase in Pi concentration in slow-twitch muscle has four phases, but as in fast-twitch muscle, only phase II (an exponential decline in force) appears to be caused by Pi binding to cross bridges, whereas the other three phases are probably indirect effects caused by caged Pi photolysis. The amplitude of phase II is consistent with the steady-state reduction in force by Pi. The rate of phase II (kappa Pi) is 3.9 +/- 0.33 s-1 at 20 degrees C and 0.28 +/- 0.02 s-1 at 10 degrees C (1 mM Pi). kappa Pi is thus 33 times slower in slow-twitch muscle than in fast at 20 degrees C and 84 times slower at 10 degrees C. In contrast to fast-twitch muscle, in slow muscle kappa Pi is sufficiently slow to partially limit the ATPase turnover rate.


1996 ◽  
Vol 270 (6) ◽  
pp. R1355-R1360
Author(s):  
E. Johannsson ◽  
O. Waerhaug ◽  
A. Bonen

We determined whether the twitch-velocity phenotype or the metabolic phenotype of a muscle influences the content of GLUT-4 and GLUT-1 proteins. The soleus (Sol) and extensor digitorum longus (EDL) muscles were cross-reinnervated (X-Sol, X-EDL). After 3 mo the X-EDL had become enriched in slow-twitch oxidative (SO) fibers (70.5% SO) compared with its control (3.8% SO), whereas the X-Sol became enriched in fast-twitch oxidative-glycolytic (FOG) fibers (78.6% FOG) compared with its control (10% FOG). Thus the twitch phenotype of X-Sol shifted to fast-twitch muscle, whereas X-EDL shifted to a slow-twitch muscle. In the X-EDL, the oxidative nature of the X-EDL was increased to 97% oxidative fibers compared with 43% oxidative fibers in the normal EDL. In the Sol the oxidative nature of the X-Sol was retained at 100%. GLUT-4 content was increased 1.6-fold in the X-EDL (P < 0.05) but was not changed in the X-Sol (P > 0.05). GLUT-1 content was increased fourfold in X-EDL but was not altered in the X-Sol. We conclude that GLUT-4 and GLUT-1 content in muscle is related to the oxidative phenotype of the muscle rather than the twitch-velocity phenotype.


Sign in / Sign up

Export Citation Format

Share Document