Splice variants of a ClC-2 chloride channel with differing functional characteristics

2000 ◽  
Vol 279 (4) ◽  
pp. C1198-C1210 ◽  
Author(s):  
L. Pablo Cid ◽  
María-Isabel Niemeyer ◽  
Alfredo Ramírez ◽  
Francisco V. Sepúlveda

We identified two ClC-2 clones in a guinea pig intestinal epithelial cDNA library, one of which carries a 30-bp deletion in the NH2 terminus. PCR using primers encompassing the deletion gave two products that furthermore were amplified with specific primers confirming their authenticity. The corresponding genomic DNA sequence gave a structure of three exons and two introns. An internal donor site occurring within one of the exons accounts for the deletion, consistent with alternative splicing. Expression of the variants gpClC-2 and gpClC-2Δ77–86 in HEK-293 cells generated inwardly rectifying chloride currents with similar activation characteristics. Deactivation, however, occurred with faster kinetics in gpClC-2Δ77–86. Site-directed mutagenesis suggests that a protein kinase C-mediated phosphorylation consensus site lost in gpClC-2Δ77–86 is not responsible for the observed change. The deletion-carrying variant is found in most tissues examined, and it appears more abundant in proximal colon, kidney, and testis. The presence of a splice variant of ClC-2 modified in its NH2-terminal domain could have functional consequences in tissues where their relative expression levels are different.

2014 ◽  
Vol 369 (1652) ◽  
pp. 20130513 ◽  
Author(s):  
Ian C. G. Weaver ◽  
Ian C. Hellstrom ◽  
Shelley E. Brown ◽  
Stephen D. Andrews ◽  
Sergiy Dymov ◽  
...  

Variations in maternal care in the rat influence the epigenetic state and transcriptional activity of glucocorticoid receptor (GR) gene in the hippocampus. The mechanisms underlying this maternal effect remained to be defined, including the nature of the relevant maternally regulated intracellular signalling pathways. We show here that increased maternal licking/grooming (LG), which stably enhances hippocampal GR expression, paradoxically increases hippocampal expression of the methyl-CpG binding domain protein-2 (MBD2) and MBD2 binding to the exon 1 7 GR promoter. Knockdown experiments of MBD2 in hippocampal primary cell culture show that MBD2 is required for activation of exon 1 7 GR promoter. Ectopic co-expression of nerve growth factor-inducible protein A (NGFI-A) with MBD2 in HEK 293 cells with site-directed mutagenesis of the NGFI-A response element within the methylated exon 1 7 GR promoter supports the hypothesis that MBD2 collaborates with NGFI-A in binding and activation of this promoter. These data suggest a possible mechanism linking signalling pathways, which are activated by behavioural stimuli and activation of target genes.


2006 ◽  
Vol 290 (5) ◽  
pp. H2155-H2162 ◽  
Author(s):  
Cecilia Hurtado ◽  
Michele Prociuk ◽  
Thane G. Maddaford ◽  
Elena Dibrov ◽  
Nasrin Mesaeli ◽  
...  

The Na+/Ca2+ exchanger (NCX) NCX1 exhibits tissue-specific alternative splicing. Such NCX splice variants as NCX1.1 and NCX1.3 are also differentially regulated by Na+ and Ca2+, although the physiological implications of these regulatory characteristics are unclear. On the basis of their distinct regulatory profiles, we hypothesized that cells expressing these different splice variants might exhibit unique responses to conditions promoting Ca2+ overload, such as during exposure to cardiac glycosides or simulated ischemia. NCX1.1 or NCX1.3 was expressed in human embryonic kidney (HEK)-293 cells or rat neonatal ventricular cardiomyocytes (NVC), and expression was confirmed by Western blotting and immunocytochemical analyses. HEK-293 cells lacked NCX1 protein before transfection. With use of adenoviral vectors, neonatal cardiomyocytes were induced to overexpress the NCX1.1 splice variant by nearly twofold, whereas the NCX1.3 isoform was expressed on the endogenous NCX1.1 background. Total expression was comparable for NCX1.1 and NCX1.3. Exposure of NVC to ouabain induced a significant increase in cellular Ca2+, an effect that was exaggerated in cells overexpressing NCX1.1, but not NCX1.3. The increase in intracellular Ca2+ was inhibited by 5 μM KB-R7943. Cardiomyocytes overexpressing NCX1.1 also exhibited a greater accumulation of intracellular Ca2+ in response to simulated ischemia than did cells expressing NCX1.3. Similar responses were observed in HEK-293 cells where NCX1.1 was expressed. We conclude that expression of the NCX1.3 splice variant protects against severe Ca2+ overload, whereas NCX1.1 promotes Ca2+ overload in response to cardiac glycosides and ischemic challenges. These results highlight the importance of ionic regulation in controlling NCX1 activity under conditions that promote Ca2+ overload.


2000 ◽  
Vol 83 (02) ◽  
pp. 234-238 ◽  
Author(s):  
Eva Forberg ◽  
Iris Huhmann ◽  
Ester Jimenez-Boj ◽  
Herbert Watzke

SummaryTwo homozygous point mutations were found in a patient with factor X (FX) deficiency; One results in substitution of Lys for Gla+14 and the second causes a Lys substitution for Glu102. The proposita has a severely reduced FX coagulant activity in the extrinsic (<1% of normal) and in the intrinsic (30% of normal) system of coagulation and after activation with Russel’s viper venom (18% of normal). The FX antigen is reduced in this patient to 20% of normal. The substitution of Lys for Glu102 in FX deficiency has been reported previously in a heterozygous state in conjunction with a Lys for Gla+14 substitution and with a Pro for Ser334 substitution. The contribution of the Lys for Glu102 substitution in the observed combined FX defect in these patients was unclear. The mutation causing the Glu102Lys substitution was introduced by site directed mutagenesis into a wild-type FX cDNA, and recombinant protein was expressed in HEK 293 cells. Compared to the wild-type FX cDNA, the mutant construct had a 67% activity upon activation in the extrinsic system, 93% activity upon activation in the intrinsic system and 72% after activation with RVV. The data presented show that the substitution of Lys for Glu102 results in a minor functional defect of the FX molecule.


2020 ◽  
Author(s):  
Ulli Heydasch ◽  
Renate Kessler ◽  
Jan-Peter Warnke ◽  
Klaus Eschrich ◽  
Nicole Scholz ◽  
...  

AbstractTumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells.Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered.Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0241092
Author(s):  
Ulli Heydasch ◽  
Renate Kessler ◽  
Jan-Peter Warnke ◽  
Klaus Eschrich ◽  
Nicole Scholz ◽  
...  

Tumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells. Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered. Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.


2021 ◽  
Vol 22 (19) ◽  
pp. 10638
Author(s):  
Chayma El Khamlichi ◽  
Laetitia Cobret ◽  
Jean-Michel Arrang ◽  
Séverine Morisset-Lopez

G-protein-coupled receptors (GPCRs) are dimeric proteins, but the functional consequences of the process are still debated. Active GPCR conformations are promoted either by agonists or constitutive activity. Inverse agonists decrease constitutive activity by promoting inactive conformations. The histamine H3 receptor (H3R) is the target of choice for the study of GPCRs because it displays high constitutive activity. Here, we study the dimerization of recombinant and brain H3R and explore the effects of H3R ligands of different intrinsic efficacy on dimerization. Co-immunoprecipitations and Western blots showed that H3R dimers co-exist with monomers in transfected HEK 293 cells and in rodent brains. Bioluminescence energy transfer (BRET) analysis confirmed the existence of spontaneous H3R dimers, not only in living HEK 293 cells but also in transfected cortical neurons. In both cells, agonists and constitutive activity of the H3R decreased BRET signals, whereas inverse agonists and GTPγS, which promote inactive conformations, increased BRET signals. These findings show the existence of spontaneous H3R dimers not only in heterologous systems but also in native tissues, which are able to adopt a number of allosteric conformations, from more inactive to more active states.


2016 ◽  
Vol 311 (3) ◽  
pp. C437-C451 ◽  
Author(s):  
Tae Sik Sung ◽  
Kate O'Driscoll ◽  
Haifeng Zheng ◽  
Nicholas J. Yapp ◽  
Normand Leblanc ◽  
...  

Anoctamin-1 (ANO1) is a Ca2+-activated Cl− channel expressed in many types of cells. Splice variants of ANO1 have been shown to influence the biophysical properties of conductance. It has been suggested that several new antagonists of ANO1 with relatively high affinity and selectivity might be useful for experimental and, potentially, therapeutic purposes. We investigated the effects of intracellular Ca2+ concentration ([Ca2+]i) at 100-1,000 nM, a concentration range that might be achieved in cells during physiological activation of ANO1 channels, on blockade of ANO1 channels expressed in HEK-293 cells. Whole cell and excised patch configurations of the patch-clamp technique were used to perform tests on a variety of naturally occurring splice variants of ANO1. Blockade of ANO1 currents with aminophenylthiazole (T16Ainh-A01) was highly dependent on [Ca2+]i. Increasing [Ca2+]i reduced the potency of this blocker. Similar Ca2+-dependent effects were also observed with benzbromarone. Experiments on excised, inside-out patches showed that the diminished potency of the blockers caused by intracellular Ca2+ might involve a competitive interaction for a common binding site or repulsion of the blocking drugs by electrostatic forces at the cytoplasmic surface of the channels. The degree of interaction between the channel blockers and [Ca2+]i depends on the splice variant expressed. These experiments demonstrate that the efficacy of ANO1 antagonists depends on [Ca2+]i, suggesting a need for caution when ANO1 blockers are used to determine the role of ANO1 in physiological functions and in their use as therapeutic agents.


2008 ◽  
Vol 410 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Ingeborg Winge ◽  
Jeffrey A. Mckinney ◽  
Ming Ying ◽  
Clive S. D'Santos ◽  
Rune Kleppe ◽  
...  

TPH (tryptophan hydroxylase) catalyses the rate-limiting step in the synthesis of serotonin, and exists in two isoforms: TPH1, mainly found in peripheral tissues and the pineal body, and TPH2, a neuronal form. In the present study human TPH2 was expressed in Escherichia coli and in HEK (human embryonic kidney)-293 cells and phosphorylated using several different mammalian protein kinases. TPH2 was rapidly phosphorylated to a stoichiometry of 2 mol of phosphate/mol of subunit by PKA (protein kinase A), but only to a stoichiometry of 0.2 by Ca2+/calmodulin dependent protein kinase II. Both kinases phosphorylated Ser19, but PKA also phosphorylated Ser104, as determined by MS, phosphospecific antibodies and site-directed mutagenesis of several possible phosphorylation sites, i.e. Ser19, Ser99, Ser104 and Ser306. On average, purified TPH2 WT (wild-type) was activated by 30% after PKA phosphorylation and studies of the mutant enzymes showed that enzyme activation was mainly due to phosphorylation at Ser19. This site was phosphorylated to a stoichiometry of up to 50% in HEK-293 cells expressing TPH2, and the enzyme activity and phosphorylation stoichiometry was further increased upon treatment with forskolin. Purified PKA-phosphorylated TPH2 bound to the 14-3-3 proteins γ, ϵ and BMH1 with high affinity, causing a further increase in enzyme stability and activity. This indicates that 14-3-3 proteins could play a role in consolidating and strengthening the effects of phosphorylation on TPH2 and that they may be important for the regulation of serotonin function in the nervous system.


2009 ◽  
Vol 422 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Marcienne M. WRIGHT ◽  
Junghyun KIM ◽  
Thomas D. HOCK ◽  
Norbert LEITINGER ◽  
Bruce A. FREEMAN ◽  
...  

Nitro-fatty acid products of oxidative inflammatory reactions mediate anti-inflammatory cell signalling responses. LNO2 (nitrolinoleic acid) induces expression of HO-1 (haem oxygenase-1), an enzyme that catabolizes haem into products exhibiting potent anti-inflammatory properties. In the present manuscript, the molecular mechanisms underlying HO-1 induction by LNO2 were examined in HAEC (human aortic endothelial cells), HEK-293 (human embryonic kidney 293) cells, and in transcription factor-deficient MEF (mouse embryonic fibroblasts). LNO2 induced HO-1 expression in Nrf2 [NF-E2 (nuclear factor-erythroid 2)-related factor 2]-deficient MEF and in HEK-293 cells transfected with Nrf2-specific shRNA (small-hairpin RNA), supporting the fact that LNO2-mediated HO-1 induction can be regulated by Nrf2-independent mechanisms. LNO2 activated expression of a −4.5 kb human HO-1 promoter construct, whereas a −4.0 kb construct with deletion of 500 bp from the 5′ region was unresponsive. Site-directed mutagenesis of a CRE (cAMP-response element) or of a downstream NF-E2/AP-1 (activating protein-1) element, individually, within this 500 bp region modestly reduced activation of the HO-1 promoter by LNO2. Mutations of both the CRE and the NF-E2/AP-1 site also attenuated LNO2-mediated HO-1 promoter expression, whereas the addition of a third mutation in the proximal E-box sequence completely abolished LNO2-induced HO-1 expression. Chromatin immunoprecipitation assays confirmed CREB (CRE-binding protein)-1 binding to the CRE (located at −4.0 kb) and E-box regions (located at −44 bp) of the human HO-1 promoter. A 3C (Chromosome Conformation Capture) assay of intact cells showed LNO2-induced interactions between the CRE- and E-box- containing regions. These observations indicate that regulation of human HO-1 expression by LNO2 requires synergy between CRE, AP-1 and E-box sequences and involves the participation of CREB-1.


2007 ◽  
Vol 293 (3) ◽  
pp. C848-C854 ◽  
Author(s):  
Fabrice Dabertrand ◽  
Nicolas Fritz ◽  
Jean Mironneau ◽  
Nathalie Macrez ◽  
Jean-Luc Morel

Alternative splicing of ryanodine receptor subtype 3 (RYR3) may generate a short isoform (RYR3S) without channel function and a functional full-length isoform (RYR3L). The RYR3S isoform has been shown to negatively regulate the native RYR2 subtype in smooth muscle cells as well as the RYR3L isoform when both isoforms were coexpressed in HEK-293 cells. Mouse myometrium expresses only the RYR3 subtype, but the role of RYR3 isoforms obtained by alternative splicing and their activation by cADP-ribose during pregnancy have never been investigated. Here, we show that both RYR3S and RYR3L isoforms are differentially expressed in nonpregnant and pregnant mouse myometrium. The use of antisense oligonucleotides directed against each isoform indicated that only RYR3L was activated by caffeine and cADP-ribose in nonpregnant myometrium. These RYR3L-mediated Ca2+ releases were negatively regulated by RYR3S expression. At the end of pregnancy, the relative expression of RYR3L versus RYR3S and its ability to respond to cADP-ribose were increased. Therefore, our results suggest that physiological regulation of RYR3 alternative splicing may play an essential role at the end of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document