Cells expressing unique Na+/Ca2+ exchange (NCX1) splice variants exhibit different susceptibilities to Ca2+ overload

2006 ◽  
Vol 290 (5) ◽  
pp. H2155-H2162 ◽  
Author(s):  
Cecilia Hurtado ◽  
Michele Prociuk ◽  
Thane G. Maddaford ◽  
Elena Dibrov ◽  
Nasrin Mesaeli ◽  
...  

The Na+/Ca2+ exchanger (NCX) NCX1 exhibits tissue-specific alternative splicing. Such NCX splice variants as NCX1.1 and NCX1.3 are also differentially regulated by Na+ and Ca2+, although the physiological implications of these regulatory characteristics are unclear. On the basis of their distinct regulatory profiles, we hypothesized that cells expressing these different splice variants might exhibit unique responses to conditions promoting Ca2+ overload, such as during exposure to cardiac glycosides or simulated ischemia. NCX1.1 or NCX1.3 was expressed in human embryonic kidney (HEK)-293 cells or rat neonatal ventricular cardiomyocytes (NVC), and expression was confirmed by Western blotting and immunocytochemical analyses. HEK-293 cells lacked NCX1 protein before transfection. With use of adenoviral vectors, neonatal cardiomyocytes were induced to overexpress the NCX1.1 splice variant by nearly twofold, whereas the NCX1.3 isoform was expressed on the endogenous NCX1.1 background. Total expression was comparable for NCX1.1 and NCX1.3. Exposure of NVC to ouabain induced a significant increase in cellular Ca2+, an effect that was exaggerated in cells overexpressing NCX1.1, but not NCX1.3. The increase in intracellular Ca2+ was inhibited by 5 μM KB-R7943. Cardiomyocytes overexpressing NCX1.1 also exhibited a greater accumulation of intracellular Ca2+ in response to simulated ischemia than did cells expressing NCX1.3. Similar responses were observed in HEK-293 cells where NCX1.1 was expressed. We conclude that expression of the NCX1.3 splice variant protects against severe Ca2+ overload, whereas NCX1.1 promotes Ca2+ overload in response to cardiac glycosides and ischemic challenges. These results highlight the importance of ionic regulation in controlling NCX1 activity under conditions that promote Ca2+ overload.

2020 ◽  
Author(s):  
Ulli Heydasch ◽  
Renate Kessler ◽  
Jan-Peter Warnke ◽  
Klaus Eschrich ◽  
Nicole Scholz ◽  
...  

AbstractTumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells.Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered.Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0241092
Author(s):  
Ulli Heydasch ◽  
Renate Kessler ◽  
Jan-Peter Warnke ◽  
Klaus Eschrich ◽  
Nicole Scholz ◽  
...  

Tumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells. Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered. Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.


2001 ◽  
Vol 280 (5) ◽  
pp. C1327-C1339 ◽  
Author(s):  
Silvia Guatimosim ◽  
Eric A. Sobie ◽  
Jader dos Santos Cruz ◽  
Laura A. Martin ◽  
W. J. Lederer

The TTX-sensitive Ca2+ current [ I Ca(TTX)] observed in cardiac myocytes under Na+-free conditions was investigated using patch-clamp and Ca2+-imaging methods. Cs+ and Ca2+were found to contribute to I Ca(TTX), but TEA+ and N-methyl-d-glucamine (NMDG+) did not. HEK-293 cells transfected with cardiac Na+ channels exhibited a current that resembled I Ca(TTX) in cardiac myocytes with regard to voltage dependence, inactivation kinetics, and ion selectivity, suggesting that the cardiac Na+ channel itself gives rise to I Ca(TTX). Furthermore, repeated activation of I Ca(TTX) led to a 60% increase in intracellular Ca2+ concentration, confirming Ca2+ entry through this current. Ba2+ permeation of I Ca(TTX), reported by others, did not occur in rat myocytes or in HEK-293 cells expressing cardiac Na+channels under our experimental conditions. The report of block of I Ca(TTX) in guinea pig heart by mibefradil (10 μM) was supported in transfected HEK-293 cells, but Na+current was also blocked (half-block at 0.45 μM). We conclude that I Ca(TTX) reflects current through cardiac Na+ channels in Na+-free (or “null”) conditions. We suggest that the current be renamed I Na(null) to more accurately reflect the molecular identity of the channel and the conditions needed for its activation. The relationship between I Na(null)and Ca2+ flux through slip-mode conductance of cardiac Na+ channels is discussed in the context of ion channel biophysics and “permeation plasticity.”


2016 ◽  
Vol 311 (3) ◽  
pp. C437-C451 ◽  
Author(s):  
Tae Sik Sung ◽  
Kate O'Driscoll ◽  
Haifeng Zheng ◽  
Nicholas J. Yapp ◽  
Normand Leblanc ◽  
...  

Anoctamin-1 (ANO1) is a Ca2+-activated Cl− channel expressed in many types of cells. Splice variants of ANO1 have been shown to influence the biophysical properties of conductance. It has been suggested that several new antagonists of ANO1 with relatively high affinity and selectivity might be useful for experimental and, potentially, therapeutic purposes. We investigated the effects of intracellular Ca2+ concentration ([Ca2+]i) at 100-1,000 nM, a concentration range that might be achieved in cells during physiological activation of ANO1 channels, on blockade of ANO1 channels expressed in HEK-293 cells. Whole cell and excised patch configurations of the patch-clamp technique were used to perform tests on a variety of naturally occurring splice variants of ANO1. Blockade of ANO1 currents with aminophenylthiazole (T16Ainh-A01) was highly dependent on [Ca2+]i. Increasing [Ca2+]i reduced the potency of this blocker. Similar Ca2+-dependent effects were also observed with benzbromarone. Experiments on excised, inside-out patches showed that the diminished potency of the blockers caused by intracellular Ca2+ might involve a competitive interaction for a common binding site or repulsion of the blocking drugs by electrostatic forces at the cytoplasmic surface of the channels. The degree of interaction between the channel blockers and [Ca2+]i depends on the splice variant expressed. These experiments demonstrate that the efficacy of ANO1 antagonists depends on [Ca2+]i, suggesting a need for caution when ANO1 blockers are used to determine the role of ANO1 in physiological functions and in their use as therapeutic agents.


2012 ◽  
Vol 303 (12) ◽  
pp. C1260-C1268 ◽  
Author(s):  
Marina Dobrivojević ◽  
Aleksandra Sinđić ◽  
Bayram Edemir ◽  
Stefanie Kalweit ◽  
Wolf-Georg Forssmann ◽  
...  

In this study, the interaction of natriuretic peptides (NP) and bradykinin (BK) signaling pathways was identified by measuring membrane potential ( Vm) and intracellular Ca2+ using the patch-clamp technique and flow cytometry in HEK-293 cells. BK and NP receptor mRNA was identified using RT-PCR. BK (100 nM) depolarized cells activating bradykinin receptor type 2 (B2R) and Ca2+-dependent Cl− channels inhibitable by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 10 μM). The BK-induced Ca2+ signal was blocked by the B2R inhibitor HOE 140. [Des-Arg9]-bradykinin, an activator of B1R, had no effect on intracellular Ca2+. NP [atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and urodilatin] depolarized HEK-293 cells inhibiting K+ channels. ANP, urodilatin, BNP [binding to natriuretic peptide receptor (NPR)-A] and 8-bromo-(8-Br)-cGMP inhibited the BK-induced depolarization while CNP (binding to NPR-Bi) failed to do so. The inhibitory effect on BK-triggered depolarization could be reversed by blocking PKG using the specific inhibitor KT 5823. BK-stimulated depolarization as well as Ca2+ signaling was completely blocked by the phospholipase C (PLC) inhibitor U-73122 (10 nM). The inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxydiphenyl borate (2-APB; 50 μM) completely inhibited the BK-induced Ca2+ signaling. UTP, another activator of the PLC-mediated Ca2+ signaling pathway, was blocked by U-73122 as well but not by 8-Br-cGMP, indicating an intermediate regulatory step for NP via PKG in BK signaling such as regulators of G-protein signaling (RGS) proteins. When RGS proteins were inhibited by CCG-63802 in the presence of BK and 8-Br-cGMP, cells started to depolarize again. In conclusion, as natural antagonists of the B2R signaling pathway, NP may also positively interact in pathological conditions caused by BK.


1995 ◽  
Vol 73 (7-8) ◽  
pp. 367-372 ◽  
Author(s):  
Peter A. Watson ◽  
Kathryn E. Giger ◽  
Anna M. Kempinski

In certain tissues and cells, increases in concentrations of the second messenger cAMP are seen in response to mechanical or deformational stimuli. Type I and type VIII adenylyl cyclases, representing members of a family of calcium–calmodulin-stimulated adenylyl cyclases, and type VII adenylyl cyclase were each stably expressed in human embryonal kidney (HEK) 293 cells. HEK 293 cells exogenously expressing either type I adenylyl cyclase or any one of three type VIII adenylyl cyclase splice variants respond to swelling with increases in cAMP, requiring the presence of calcium in the extracellular medium for such responsiveness. Type VII expressing HEK 293 cells failed to respond to swelling with increased cAMP but demonstrated potentiationof isoproterenol-stimulated activity. This is characteristic of the influence of protein kinase C on the activity of the type VII protein. The relative swelling responsiveness of HEK 293 cells expressing splice variants of the type VIII adenylyl cyclase is consistent with the relative EC50 values for calcium–calmodulin stimulation of these splice variants. This is consistent with the involvement of calmodulin and the requirement for increases in intracellular calcium in mediating swelling-induced acceleration of type VIII adenylyl cyclase activity.Key words: mechanotransduction, cAMP, calcium, calmodulin, cytoskeleton.


2003 ◽  
Vol 285 (2) ◽  
pp. C467-C479 ◽  
Author(s):  
Mu-Lan He ◽  
Hana Zemkova ◽  
Taka-aki Koshimizu ◽  
Melanija Tomić ◽  
Stanko S. Stojilkovic

Extracellular nucleotide-activated purinergic receptors (P2XRs) are a family of cation-permeable channels that conduct small cations, including Ca2+, leading to the depolarization of cells and subsequent stimulation of voltage-gated Ca2+ influx in excitable cells. Here, we studied the spatiotemporal characteristics of intracellular Ca2+ signaling and its dependence on current signaling in excitable mouse immortalized gonadotropin-releasing hormone-secreting cells (GT1) and nonexcitable human embryonic kidney cells (HEK-293) cells expressing wild-type and chimeric P2XRs. In both cell types, P2XR generated depolarizing currents during the sustained ATP stimulation, which desensitized in order (from rapidly desensitizing to nondesensitizing): P2X3R > P2X2b + X4R > P2X2bR > P2X2a + X4R > P2X4R > P2X2aR > P2X7R. HEK-293 cells were not suitable for studies on P2XR-mediated Ca2+ influx because of the coactivation of endogenously expressed Ca2+-mobilizing purinergic P2Y receptors. However, when expressed in GT1 cells, all wild-type and chimeric P2XRs responded to agonist binding with global Ca2+ signals, which desensitized in the same order as current signals but in a significantly slower manner. The global distribution of Ca2+ signals was present independently of the rate of current desensitization. The temporal characteristics of Ca2+ signals were not affected by voltage-gated Ca2+ influx and removal of extracellular sodium. Ca2+ signals reflected well the receptor-specific EC50 values for ATP and the extracellular Zn2+ and pH sensitivities of P2XRs. These results indicate that intracellular Ca2+ measurements are useful for characterizing the pharmacological properties and messenger functions of P2XRs, as well as the kinetics of channel activity, when the host cells do not express other members of purinergic receptors.


2006 ◽  
Vol 291 (4) ◽  
pp. H1822-H1828 ◽  
Author(s):  
Bi-Hua Tan ◽  
Carmen R. Valdivia ◽  
Chunhua Song ◽  
Jonathan C. Makielski

Mutations in the cardiac Na+ channel gene SCN5A cause loss of function and underlie arrhythmia syndromes. SCN5A in humans has two splice variants, one lacking a glutamine at position 1077 (Q1077del) and one containing Q1077. We investigated the effect of splice variant background on loss of function and rescue for G1406R, a mutation reported to cause Brugada syndrome. Mutant and wild-type (WT) channels in both backgrounds were transfected into HEK-293 cells and incubated for up to 72 h with and without mexiletine. At 8 h, neither current nor cell surface expression was observed for the mutant in either background, but both were present in WT channels. At 24 h, small (<10% compared with WT) currents were noted and accompanied by cell surface expression. At 48 h, current density was ∼40% of WT channels for the mutant in the Q1077del variant background but remained at <10% of WT channels in Q1077. Current levels were stable by 72 h. Coexpression with β1- or β3-subunits or insertion of the polymorphism H558R in the background did not significantly affect current expression. Mexiletine restored current density of the mutant channel in both backgrounds to nearly WT levels. The mutant channels also showed a negative shift in inactivation, slower recovery, and enhanced slow inactivation, consistent with a loss of function phenotype. These data show that a trafficking defect may be partial and time dependent and may differ with the splice variant background. Also, expression defects and gating abnormalities may contribute to loss of function for the same mutation.


2006 ◽  
Vol 291 (4) ◽  
pp. F796-F805 ◽  
Author(s):  
Balasubramaniem Ashokkumar ◽  
Nosratola D. Vaziri ◽  
Hamid M. Said

Thiamin (vitamin B1) is essential for normal cellular functions. The kidneys play a critical role in regulating body thiamin homeostasis, by salvaging the vitamin via reabsorption from the glomerular filtrate, but little is known about the mechanism(s) and regulation of thiamin transport in the human renal epithelia at cellular and molecular levels. Using the human-derived renal epithelial HEK-293 cells as a model, we have addressed these issues. Our results showed [3H]thiamin uptake to be 1) temperature and energy dependent but Na+ independent, 2) pH dependent with higher uptake at alkaline/neutral buffer pH compared with acidic pH, 3) saturable as a function of concentration over the nanomolar (apparent Km = 70.0 ± 18.4 nM) and micromolar (apparent Km = 2.66 ± 0.18 μM) ranges, 4) cis-inhibited by unlabeled thiamin and its structural analogs but not by unrelated organic cations, 5) trans-stimulated by unlabeled thiamin, and 6) competitively inhibited by amiloride with an apparent Ki of 0.6 mM. Using a gene-specific small-interference RNAs (siRNAs) approach, human thiamin transporters 1 and 2 (hTHTR-1 and hTHTR-2) were both found to be expressed and contributed toward total carrier-mediated thiamin uptake. Maintaining the cells in thiamin-deficient medium led to a significant ( P < 0.01) and specific upregulation in [3H]thiamin uptake, which was associated with an increase in hTHTR-1 and hTHTR-2 protein and mRNA levels as well as promoter activities. Uptake of thiamin by HEK-293 cells also appeared to be under the regulation of an intracellular Ca2+/calmodulin-mediated pathway. These studies demonstrate for the first time that thiamin uptake by HEK-293 cells is mediated via a specific pH-dependent process, which involves both the hTHTR-1 and hTHTR-2. In addition, the uptake process appears to be under the regulation of an intracellular Ca2+/CaM-mediated pathway and also adaptively upregulated in thiamin deficiency via transcriptional regulatory mechanism(s) that involves both the hTHTR-1 and hTHTR-2.


Sign in / Sign up

Export Citation Format

Share Document