Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment

2002 ◽  
Vol 283 (5) ◽  
pp. E867-E879 ◽  
Author(s):  
Eun-Kyoung Kim ◽  
Ian Miller ◽  
Leslie E. Landree ◽  
Felice F. Borisy-Rudin ◽  
Pierre Brown ◽  
...  

We previously demonstrated that C75, a specific and potent inhibitor of fatty acid synthase (FAS), reduced food intake and decreased body weight in mice. In the present study, we determined that these effects were not due to conditioned taste aversion. To investigate the mechanism of C75 action, we examined FAS brain expression. FAS was expressed in a number of brain regions, including arcuate and paraventricular nuclei (PVN) within regions that comprise the arcuate-PVN pathway in mouse and human. Although C75 and fasting significantly downregulated liver FAS, FAS levels remained high in hypothalamus, indicating that FAS levels were regulated differently in brain from those in liver. Double fluorescence in situ for FAS and neuropeptide Y (NPY) showed that FAS co-localized with NPY in neurons in the arcuate nucleus. NPY immnuoreactivity after C75 treatment was decreased in axon terminals that innervate the PVN and lateral hypothalamus. Collectively, these results demonstrate that FAS is present and active in neurons and suggests that C75 may alter food intake via interactions within the arcuate-PVN pathway mediated by NPY.

2007 ◽  
Vol 292 (1) ◽  
pp. R242-R252 ◽  
Author(s):  
Chantacha Anukulkitch ◽  
Alexandra Rao ◽  
Frank R. Dunshea ◽  
Dominique Blache ◽  
Gerald A. Lincoln ◽  
...  

We studied the effects of photoperiod on metabolic profiles, adiposity, and gene expression of hypothalamic appetite-regulating peptides in gonad-intact and castrated Soay rams. Groups of five to six animals were studied 6, 18, or 30 wk after switching from long photoperiod (LP: 16 h of light) to short photoperiod (SP: 8 h of light). Reproductive and metabolic indexes were measured in blood plasma. Expression of neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor (ObRb) in the arcuate nucleus was measured using in situ hybridization. Testosterone levels of intact animals were low under LP, increased to a peak at 16 wk under SP, and then declined. Voluntary food intake (VFI) was high under LP in both intact and castrated animals, decreased to a nadir at 12–16 wk under SP, and then recovered, but only in intact rams as the reproductive axis became photorefractory to SP. NPY gene expression varied positively and POMC expression varied negatively with the cycle in VFI, with differences between intact and castrate rams in the refractory phase. ObRb expression decreased under SP, unrelated to changes in VFI. Visceral fat weight also varied between the intact and castrated animals across the cycle. We conclude that 1) photoperiodic changes in VFI reflect changes in NPY and POMC gene expression, 2) changes in ObRb gene expression are not necessarily determinants of changes in VFI, 3) gonadal status affects the pattern of VFI that changes with photoperiod, and 4) in the absence of gonadal factors, animals can eat less but gain adiposity.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1190 ◽  
Author(s):  
Su-Min Lim ◽  
Hyun Sook Lee ◽  
Jae In Jung ◽  
So Mi Kim ◽  
Nam Young Kim ◽  
...  

Aronia melanocarpa are a rich source of anthocyanins that have received considerable interest for their relations to human health. In this study, the anti-adipogenic effect of cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract (AM-Ex) and its underlying mechanisms were investigated in an in vivo system. Five-week-old male C57BL/6N mice were randomly divided into five groups for 8-week feeding with a control diet (CD), a high-fat diet (HFD), or a HFD with 50 (AM-Ex 50), 100 (AM-Ex 100), or 200 AM-Ex (AM-Ex 200) mg/kg body weight/day. HFD-fed mice showed a significant increase in body weight compared to the CD group, and AM-Ex dose-dependently inhibited this weight gain. AM-Ex significantly reduced the food intake and the weight of white fat tissue, including epididymal fat, retroperitoneal fat, mesenteric fat, and inguinal fat. Treatment with AM-Ex (50 to 200 mg/kg) reduced serum levels of leptin, insulin, triglyceride, total cholesterol, and low density lipoprotein (LDL)-cholesterol. Real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that AM-Ex suppressed adipogenesis by decreasing CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma coactivator-1α, acetyl-CoA carboxylase 1, ATP-citrate lyase, fatty acid synthase, and adipocyte protein 2 messenger RNA (mRNA) expressions. These results suggest that AM-Ex is potentially beneficial for the suppression of HFD-induced obesity by modulating multiple pathways associated with adipogenesis and food intake.


Neuropeptides ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 281-285 ◽  
Author(s):  
Christopher J. Hagen ◽  
Brandon A. Newmyer ◽  
Rebekah I. Webster ◽  
Elizabeth R. Gilbert ◽  
Paul B. Siegel ◽  
...  

Endocrinology ◽  
1999 ◽  
Vol 140 (6) ◽  
pp. 2645-2650 ◽  
Author(s):  
Peilin Chen ◽  
Chien Li ◽  
Carrie Haskell-Luevano ◽  
Roger D. Cone ◽  
M. Susan Smith

Abstract During lactation, the levels of neuropeptide Y (NPY), which plays an important role in mediating food intake, are significantly elevated in a number of hypothalamic areas, including the arcuate nucleus (ARH). To identify additional hypothalamic systems that might be important in mediating the increase in food intake and alterations in energy homeostasis during lactation, the present studies examined the expression of agouti-related protein (AGRP), a recently described homologue of the skin agouti protein. AGRP is found in the hypothalamus and has been suggested to play an important role in the regulation of food intake. In the first experiment, animals were studied during diestrus of the estrous cycle, a stage of the cycle when estrogen levels are basal and similar to lactation, or during days 12–13 postpartum. Lactating animals had their litters adjusted to eight pups on day 2 postpartum. Brain tissue sections were used to measure AGRP messenger RNA (mRNA) levels by in situ hybridization. AGRP mRNA signal was found mostly in the ventromedial portion of the ARH, which has been shown to contain a high density of NPY neurons. A significant increase in AGRP mRNA content was observed in the mid- to caudal portion of the ARH of lactating animals compared with diestrous females. No difference was found in the rostral portion of the ARH. In the second experiment, double-label in situ hybridization for AGRP and NPY was performed in lactating animals to determine the extent of colocalization of the two peptides in the ARH, using 35S-labeled and digoxigenin-labeled antisense complementary RNA probes. It was found that almost all of the NPY-positive neurons throughout the ARH also expressed AGRP mRNA signal. Furthermore, AGRP expression was confined almost exclusively to NPY-positive neurons. Thus, the present study showed that during lactation, AGRP gene expression was significantly elevated in a subset of the AGRP neurons in the ARH. The high degree of colocalization of AGRP and NPY, coupled with previous reports from our laboratory demonstrating increased NPY expression in the ARH in response to suckling, suggests that AGRP and NPY are coordinately regulated and may be involved in the increase in food intake during lactation.


2020 ◽  
Vol 12 (533) ◽  
pp. eaay8071 ◽  
Author(s):  
Samantha M. Fortin ◽  
Rachele K. Lipsky ◽  
Rinzin Lhamo ◽  
Jack Chen ◽  
Eun Kim ◽  
...  

The glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide is approved for the treatment of obesity; however, there is still much to be learned regarding the neuronal sites of action that underlie its suppressive effects on food intake and body weight. Peripherally administered liraglutide in rats acts in part through central GLP-1Rs in both the hypothalamus and the hindbrain. Here, we extend findings supporting a role for hindbrain GLP-1Rs in mediating the anorectic effects of liraglutide in male rats. To dissociate the contribution of GLP-1Rs in the area postrema (AP) and the nucleus tractus solitarius (NTS), we examined the effects of liraglutide in both NTS AAV-shRNA–driven Glp1r knockdown and AP-lesioned animals. Knockdown of NTS GLP-1Rs, but not surgical lesioning of the AP, attenuated the anorectic and body weight–reducing effects of acutely delivered liraglutide. In addition, NTS c-Fos responses were maintained in AP-lesioned animals. Moreover, NTS Glp1r knockdown was sufficient to attenuate the intake- and body weight–reducing effects of chronic daily administered liraglutide over 3 weeks. Development of improved obesity pharmacotherapies requires an understanding of the cellular phenotypes targeted by GLP-1R agonists. Fluorescence in situ hybridization identified Glp1r transcripts in NTS GABAergic neurons, which when inhibited using chemogenetics, attenuated the food intake– and body weight–reducing effects of liraglutide. This work demonstrates the contribution of NTS GLP-1Rs to the anorectic potential of liraglutide and highlights a phenotypically distinct (GABAergic) population of neurons within the NTS that express the GLP-1R and are involved in the mediation of liraglutide signaling.


1996 ◽  
Vol 270 (5) ◽  
pp. R1019-R1024 ◽  
Author(s):  
E. M. Kim ◽  
C. C. Welch ◽  
M. K. Grace ◽  
C. J. Billington ◽  
A. S. Levine

Although opioid administration induces food intake, the relationship between endogenous opioid synthesis and food consumption is unclear. Two studies examined the effects of food restriction and deprivation on opioid mRNA levels in the arcuate nucleus (ARC) of the rat. Body weight significantly decreased following food restriction and deprivation (P < 0.0001). In experiment 1, food restriction of 10,20,30, and 40% (g) of ad libitum intake for 14 days decreased proDynorphin (proDyn), proEnkephalin (proEnk), and proOpiomelanocortin (POMC) mRNA levels in a linear fashion relative to changes in body weight (r = 0.398, P = 0.0011; r = 0.455, P = 0.0028; r = 0.292, P = 0.0642, respectively). In experiment 2, 48 h deprivation significantly decreased mRNA levels of proDyn and POMC by 23.7% (P < 0.05) and 45.6% (P < 0.01), respectively, whereas 24 h food deprivation decreased POMC mRNA by 43.% (P < 0.01). proEnk mRNA was not affected by 24- or 48-h food deprivation. Restricting food intake suppressed mRNA levels of proDyn, proEnk, and POMC by 29.7, 22.3, and 44.4%, respectively, in 20% restricted rats and by 35.5, 26.8, and 45.6%, respectively, in 40%restricted rats (P < 0.01). It appears that ARC mRNA levels of proDyn, proEnk, and POMC are directly related to the amount of food consumed and/or changes in body weight in food-restricted and food-deprived rats.


2008 ◽  
Vol 294 (2) ◽  
pp. R352-R361 ◽  
Author(s):  
Susan Aja ◽  
Leslie E. Landree ◽  
Amy M. Kleman ◽  
Susan M. Medghalchi ◽  
Aravinda Vadlamudi ◽  
...  

Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1–56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss.


2013 ◽  
Vol 221 (1) ◽  
pp. T1-T16 ◽  
Author(s):  
L van Bloemendaal ◽  
J S ten Kulve ◽  
S E la Fleur ◽  
R G Ijzerman ◽  
M Diamant

The delivery of nutrients to the gastrointestinal tract after food ingestion activates the secretion of several gut-derived mediators, including the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 receptor agonists (GLP-1RA), such as exenatide and liraglutide, are currently employed successfully in the treatment of patients with type 2 diabetes mellitus. GLP-1RA improve glycaemic control and stimulate satiety, leading to reductions in food intake and body weight. Besides gastric distension and peripheral vagal nerve activation, GLP-1RA induce satiety by influencing brain regions involved in the regulation of feeding, and several routes of action have been proposed. This review summarises the evidence for a physiological role of GLP-1 in the central regulation of feeding behaviour and the different routes of action involved. Also, we provide an overview of presently available data on pharmacological stimulation of GLP-1 pathways leading to alterations in CNS activity, reductions in food intake and weight loss.


Sign in / Sign up

Export Citation Format

Share Document