scholarly journals Fatty Acid Synthase Inhibitors Reduce Food Intake and Body Weight

2000 ◽  
Vol 48 (4) ◽  
pp. 422-422 ◽  
Author(s):  
Richard S Strauss
2008 ◽  
Vol 294 (2) ◽  
pp. R352-R361 ◽  
Author(s):  
Susan Aja ◽  
Leslie E. Landree ◽  
Amy M. Kleman ◽  
Susan M. Medghalchi ◽  
Aravinda Vadlamudi ◽  
...  

Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1–56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss.


2021 ◽  
Vol 22 (11) ◽  
pp. 5951
Author(s):  
Xiaofei Zhou ◽  
Xiaoyu Ling ◽  
Huijuan Guo ◽  
Keyan Zhu-Salzman ◽  
Feng Ge ◽  
...  

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.


2002 ◽  
pp. 245-249 ◽  
Author(s):  
Y Furuhata ◽  
K Hirabayashi ◽  
T Yonezawa ◽  
M Takahashi ◽  
M Nishihara

BACKGROUND: It has been shown that GH-deficient subjects tend to have fat accumulation. We have produced human GH (hGH) transgenic rats that exhibit low circulating hGH levels and hyperphagia. These rats are also characterized by severe obesity, hyperinsulinemia and hyperlipidemia. OBJECTIVE: The present study was conducted in order to elucidate how excess caloric intake and impaired GH secretion account for fat accumulation and metabolic abnormalities in the transgenic rats. DESIGN AND METHODS: The transgenic rats were subjected to either pair-feeding with non-transgenic controls or hGH treatment from 4 to 12 weeks of age, and the effects on fat accumulation and some metabolic parameters were assessed. RESULTS: At the age of 12 weeks, body weight and food intake were greater in transgenic than in control rats by 10% and 27% respectively. The ratio of epididymal white adipose tissue weight to body weight (WAT/BW) was more than three times greater in transgenic than in control rats. Although pair-feeding for 8 weeks decreased body weight, it did not affect the WAT/BW ratio. Treatment with hGH affected neither body weight nor food intake, while it reduced the WAT/BW ratio by 30%. Serum concentrations of triglyceride, free fatty acid, insulin and leptin were all significantly higher in the transgenic than in the control rats. Pair-feeding decreased serum triglyceride, insulin and leptin levels, but not serum free fatty acid levels. On the other hand, hGH treatment decreased only serum leptin concentrations. CONCLUSIONS: These results suggest that severe fat accumulation in the transgenic rats mainly resulted from the decreased lipolytic action of GH, while metabolic abnormalities mainly resulted from excess caloric intake.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1190 ◽  
Author(s):  
Su-Min Lim ◽  
Hyun Sook Lee ◽  
Jae In Jung ◽  
So Mi Kim ◽  
Nam Young Kim ◽  
...  

Aronia melanocarpa are a rich source of anthocyanins that have received considerable interest for their relations to human health. In this study, the anti-adipogenic effect of cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract (AM-Ex) and its underlying mechanisms were investigated in an in vivo system. Five-week-old male C57BL/6N mice were randomly divided into five groups for 8-week feeding with a control diet (CD), a high-fat diet (HFD), or a HFD with 50 (AM-Ex 50), 100 (AM-Ex 100), or 200 AM-Ex (AM-Ex 200) mg/kg body weight/day. HFD-fed mice showed a significant increase in body weight compared to the CD group, and AM-Ex dose-dependently inhibited this weight gain. AM-Ex significantly reduced the food intake and the weight of white fat tissue, including epididymal fat, retroperitoneal fat, mesenteric fat, and inguinal fat. Treatment with AM-Ex (50 to 200 mg/kg) reduced serum levels of leptin, insulin, triglyceride, total cholesterol, and low density lipoprotein (LDL)-cholesterol. Real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that AM-Ex suppressed adipogenesis by decreasing CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma coactivator-1α, acetyl-CoA carboxylase 1, ATP-citrate lyase, fatty acid synthase, and adipocyte protein 2 messenger RNA (mRNA) expressions. These results suggest that AM-Ex is potentially beneficial for the suppression of HFD-induced obesity by modulating multiple pathways associated with adipogenesis and food intake.


2011 ◽  
Vol 107 (11) ◽  
pp. 1714-1725 ◽  
Author(s):  
A. Cláudia Figueiredo-Silva ◽  
Sadasivam Kaushik ◽  
Frédéric Terrier ◽  
Johan W. Schrama ◽  
Françoise Médale ◽  
...  

We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15 weeks one of the four isoproteic diets containing fish oil (FO) or CO as fat source (FS), incorporated at 5 % (low fat, LF) or 15 % (high fat, HF). Fat level or FS did not modify food intake (g/kg0·8per d), despite higher intestinal cholecystokinin-T mRNA in trout fed the HF-FO diet. The HF diets relative to the LF ones induced higher growth and adiposity, whereas the replacements of FO by CO resulted in similar growth and adiposity. This, together with the substantial retention of C12 (57 % of intake), suggests the relatively low oxidation of ingested C12. The down-regulation of carnitine palmitoyl-transferase-1 (CPT-1) confirms the minor dependency of medium-chain fatty acids (MCFA) on CPT-1 to enter the mitochondria. However, MCFA did not up-regulate mitochondrial oxidation evaluated using hepatic hydroxyacyl-CoA dehydrogenase as a marker, in line with their high retention in body lipids. At a low lipid level, MCFA increased mRNA levels of fatty acid synthase, elongase and stearoyl-CoA desaturase in liver, showing the hepatic activation of fatty acid synthesis pathways by MCFA, reflected by increased 16 : 0, 18 : 0, 16 : 1, 18 : 1 body levels. The high capacity of trout to incorporate and transform C12, rather than to readily oxidise C12, contrasts with data in mammals and may explain the absence of a satiating effect of CO in rainbow trout.


2000 ◽  
Vol 59 (3) ◽  
pp. 373-384 ◽  
Author(s):  
George A. Bray

Food intake is a regulated system. Afferent signals provide information to the central nervous system, which is the centre for the control of satiety or food seeking. Such signals can begin even before food is ingested through visual, auditory and olfactory stimuli. One of the recent interesting findings is the demonstration that there are selective fatty acid taste receptors on the tongue of rodents. The suppression of food intake by essential fatty acids infused into the stomach and the suppression of electrical signals in taste buds reflect activation of a K rectifier channel (K 1.5). In animals that become fat eating a high-fat diet the suppression of this current by linoleic acid is less than that in animals that are resistant to obesity induced by dietary fat. Inhibition of fatty acid oxidation with either mercaptoacetate (which blocks acetyl-CoA dehydrogenase) or methyl­palmoxirate will increase food intake. When animals have a choice of food, mercaptoacetate stimulates the intake of protein and carbohydrate, but not fat. Afferent gut signals also signal satiety. The first of these gut signals to be identified was cholecystokinin (CCK). When CCK acts on CCK-A receptors in the gastrointestinal tract, food intake is suppressed. These signals are transmitted by the vagus nerve to the nucleus tractus solitarius and thence to higher centres including the lateral parabrachial nucleus, amygdala, and other sites. Rats that lack the CCK-A receptor become obese, but transgenic mice lacking CCK-A receptors do not become obese. CCK inhibits food intake in human subjects. Enterostatin, the pentapeptide produced when pancreatic colipase is cleaved in the gut, has been shown to reduce food intake. This peptide differs in its action from CCK by selectively reducing fat intake. Enterostatin reduces hunger ratings in human subjects. Bombesin and its human analogue, gastrin inhibitory peptide (also gastrin-insulin peptide), reduce food intake in obese and lean subjects. Animals lacking bombesin-3 receptor become obese, suggesting that this peptide may also be important. Circulating glucose concentrations show a dip before the onset of most meals in human subjects and rodents. When the glucose dip is prevented, the next meal is delayed. The dip in glucose is preceded by a rise in insulin, and stimulating insulin release will decrease circulating glucose and lead to food intake. Pyruvate and lactate inhibit food intake differently in animals that become obese compared with lean animals. Leptin released from fat cells is an important peripheral signal from fat stores which modulates food intake. Leptin deficiency or leptin receptor defects produce massive obesity. This peptide signals a variety of central mechanisms by acting on receptors in the arcuate nucleus and hypothalamus. Pancreatic hormones including glucagon, amylin and pancreatic polypeptide reduce food intake. Four pituitary peptides also modify food intake. Vasopressin decreases feeding. In contrast, injections of desacetyl melanocyte-stimulating hormone, growth hormone and prolactin are associated with increased food intake. Finally, there are a group of miscellaneous peptides that modulate feeding. β-Casomorphin, a heptapeptide produced during the hydrolysis of casein, stimulates food intake in experimental animals. In contrast, the other peptides in this group, including calcitonin, apolipoprotein A-IV, the cyclized form of histidyl-proline, several cytokines and thyrotropin-releasing hormone, all decrease food intake. Many of these peptides act on gastrointestinal or hepatic receptors that relay messages to the brain via the afferent vagus nerve. As a group they provide a number of leads for potential drug development.


Sign in / Sign up

Export Citation Format

Share Document