Human skeletal muscle PPARα expression correlates with fat metabolism gene expression but not BMI or insulin sensitivity

2004 ◽  
Vol 286 (2) ◽  
pp. E168-E175 ◽  
Author(s):  
Junlong Zhang ◽  
D. I. W. Phillips ◽  
Chunli Wang ◽  
Christopher D. Byrne

Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator of fatty acid oxidation in skeletal muscle, but few data exist from humans in vivo. To investigate whether insulin sensitivity in skeletal muscle and body mass index (BMI) were associated with skeletal muscle expression of PPARα and with important genes regulating lipid metabolism in humans in vivo, we undertook hyperinsulinemic-euglycemic clamps and measured PPARα mRNA levels and mRNA levels of lipid regulating PPARα response genes in skeletal muscle biopsies. mRNA levels were measured in 16 men, using a novel highly sensitive and specific medium throughput quantitative competitive PCR that allows reproducible measurement of multiple candidate mRNAs simultaneously. mRNA levels of PPARα were positively correlated with mRNA levels of CD36 ( r = 0.77, P = 0.001), lipoprotein lipase ( r = 0.54, P = 0.024), muscle-type carnitine palmitoyltransferase-I ( r = 0.54, P = 0.024), uncoupling protein-2 ( r = 0.63, P = 0.008), and uncoupling protein-3 ( r = 0.53, P = 0.026), but not with measures of insulin sensitivity, BMI, or GLUT4, which plays an important role in insulin-mediated glucose uptake. Thus our data suggest that in humans skeletal muscle PPARα expression and genes regulating lipid metabolism are tightly linked, but there was no association between both insulin sensitivity and BMI with PPARα expression in skeletal muscle.

2009 ◽  
Vol 296 (5) ◽  
pp. E1120-E1132 ◽  
Author(s):  
Christelle Veyrat-Durebex ◽  
Xavier Montet ◽  
Manlio Vinciguerra ◽  
Asllan Gjinovci ◽  
Paolo Meda ◽  
...  

The inbred Lou/C rat, originating from the Wistar strain, has been described as a model of resistance to diet-induced obesity, but little is known about its metabolism. Since this knowledge could provide some clues about the etiology of obesity/insulin resistance, this study aimed at characterizing glucose and lipid metabolism in Lou/C vs. Wistar rats. This was achieved by performing glucose and insulin tolerance tests, euglycemic hyperinsulinemic clamps, and characterization of intracellular insulin signaling in skeletal muscle. Substrate-induced insulin secretion was evaluated using perfused pancreas and isolated islets. Finally, body fat composition and the expression of various factors involved in lipid metabolism were determined. Body weight and caloric intake were lower in Lou/C than in Wistar rats, whereas food efficiency was similar. Improved glucose tolerance of Lou/C rats was not related to increased insulin output but was related to improved insulin sensitivity/responsiveness in the liver and in skeletal muscles. In the latter tissue, this was accompanied by improved insulin signaling, as suggested by higher activation of the insulin receptor and of the Akt/protein kinase B pathway. Fat deposition was markedly lower in Lou/C than in Wistar rats, especially in visceral adipose tissue. In the inguinal adipose depot, expression of uncoupling protein-1 was detected in Lou/C but not in Wistar rats, in keeping with a higher expression of peroxisome proliferator-activated receptor-γ coactivator-1 in these animals. The Lou/C rat is a valuable model of spontaneous food restriction with associated improved insulin sensitivity. Independently from its reduced caloric intake, it also exhibits a preferential channeling of nutrients toward utilization rather than storage.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Anna-Maria Ordelheide ◽  
Martin Heni ◽  
Nadja Gommer ◽  
Lisa Gasse ◽  
Carina Haas ◽  
...  

Muscle lipid oxidation is stimulated by peroxisome proliferator-activated receptor (PPAR) δ or adiponectin receptor signalling. We studied human myocyte expression of the PPARδ and adiponectin receptor genes and their relationship to lipid parameters of the donors. The mRNA levels of the three adiponectin receptors, AdipoR1, AdipoR2, and T-cadherin, were highly interrelated (r≥0.91). However, they were not associated with GPBAR1, an unrelated membrane receptor. In addition, the adiponectin receptors were positively associated with PPARδ expression (r≥0.75). However, they were not associated with PPARα. Using stepwise multiple linear regression analysis, PPARδ was a significant determinant of T-cadherin (P=.0002). However, pharmacological PPARδ activation did not increase T-cadherin expression. The myocyte expression levels of AdipoR1 and T-cadherin were inversely associated with the donors' fasting plasma triglycerides (P<.03). In conclusion, myocyte expression of PPARδ and the adiponectin receptors are highly coordinated, and this might be of relevance for human lipid metabolism in vivo.


2005 ◽  
Vol 289 (1) ◽  
pp. E40-E45 ◽  
Author(s):  
Denis Arsenijevic ◽  
Eva Gallmann ◽  
William Moses ◽  
Thomas Lutz ◽  
Charlotte Erlanson-Albertsson ◽  
...  

This study investigated the chronic effect of enterostatin on body weight and some of the associated changes in postprandial metabolism. Rats were adapted to 6 h of food access/day and a choice of low-fat and high-fat (HF) food and then given enterostatin or vehicle by an intraperitoneally implanted minipump delivering 160 nmol enterostatin/h continuously over a 5-day infusion period. Enterostatin resulted in a slight but significant reduction of HF intake and body weight. After the last 6-h food access period, enterostatin-treated animals had lower plasma triglyceride and free fatty acid but higher plasma glucose and lactate levels than control animals. Enterostatin infusion resulted in increased uncoupling protein-2 (UCP2) expression in various tissues, including epididymal fat and liver. UCP2 was reduced in the pancreas of enterostatin-treated animals, and this was associated with increased plasma levels of insulin and amylin. Whether these two hormones are involved in the observed decreased food intake due to enterostatin remains to be determined. As lipid metabolism appeared to be altered by enterostatin, we measured peroxisome proliferator-activated receptor (PPAR) expression in tissues and observed that PPARα, -β, -γ1, and -γ2 expression were modified by enterostatin in epididymal fat, pancreas, and liver. This further links altered lipid metabolism with body weight loss. Our data suggest that alterations in UCP2 and PPARγ2 play a role in the control of insulin and amylin release from the pancreas. This implies that enterostatin changes lipid and carbohydrate metabolic pathways in addition to its effects on food intake and energy expenditure.


2019 ◽  
Vol 316 (3) ◽  
pp. R243-R254 ◽  
Author(s):  
Carlos Roberto Porto Dechandt ◽  
Tatiane M. Vicentini ◽  
Guilherme Pauperio Lanfredi ◽  
Rui M. P. Silva-Jr. ◽  
Enilza Maria Espreafico ◽  
...  

The Wistar audiogenic rat (WAR) is an animal model of tonic-clonic epileptic seizures, developed after genetic selection by sister × brother inbreeding of Wistar rats susceptible to sound stimuli. Although metabolic changes have been described in this strain, nothing is known about its mitochondrial metabolism. Here, we addressed mitochondrial aspects of oxidative phosphorylation, oxidative stress, biogenesis, and dynamics in liver, skeletal muscle, and heart of male WARs and correlating them with physiological aspects of body metabolism. The results showed higher mitochondrial content, respiration rates in phosphorylation and noncoupled states, and H2O2 production in WARs. Liver presented higher content of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and mammalian target of rapamycin, proteins related to mitochondrial biogenesis. In agreement, isolated liver mitochondria from WARs showed higher respiration rates in phosphorylation state and ADP-to-O ratio, as well as higher content of proteins related to electron transport chain ATP synthase, TCA cycle, and mitochondrial fusion and fission compared with their Wistar counterparts. Mitochondria with higher area and perimeter and more variable shapes were found in liver and soleus from WARs in addition to lower reduced-to-oxidized glutathione ratio. In vivo, WARs demonstrated lower body mass and energy expenditure but higher food and water intake and amino acid oxidation. When exposed to a running test, WARs reached higher speed and resisted for a longer time and distance than their Wistar controls. In conclusion, the WAR strain has mitochondrial changes in liver, skeletal muscle, and heart that improve its mitochondrial capacity of ATP production, making it an excellent rat model to study PGC1α overexpression and mitochondrial function in different physiological conditions or facing pathological challenges.


2004 ◽  
Vol 287 (5) ◽  
pp. E888-E895 ◽  
Author(s):  
Melissa A. Stavinoha ◽  
Joseph W. RaySpellicy ◽  
M. Faadiel Essop ◽  
Christophe Graveleau ◽  
E. Dale Abel ◽  
...  

The physiological role of mitochondrial thioesterase 1 (MTE1) is unknown. It was proposed that MTE1 promotes fatty acid (FA) oxidation (FAO) by acting in concert with uncoupling protein (UCP)3. We previously showed that ucp3 is a peroxisome proliferator-activated receptor-α (PPARα)-regulated gene, allowing induction when FA availability increases. On the assumption that UCP3 and MTE1 act in partnership to increase FAO, we hypothesized that mte1 is also a PPARα-regulated gene in cardiac and skeletal muscle. Using real-time RT-PCR, we characterized mte1 gene expression in rat heart and soleus muscles. Messenger RNA encoding for mte1 was 3.2-fold higher in heart than in soleus muscle. Cardiac mte1 mRNA exhibited modest diurnal variation, with 1.4-fold higher levels during dark phase. In contrast, skeletal muscle mte1 mRNA remained relatively constant over the course of the day. High-fat feeding, fasting, and streptozotocin-induced diabetes, interventions that increase FA availability, muscle PPARα activity, and muscle FAO rates, increased mte1 mRNA in heart and soleus muscle. Conversely, pressure overload and hypoxia, interventions that decrease cardiac PPARα activity and FAO rates, repressed cardiac mte1 expression. Specific activation of PPARα in vivo through WY-14643 administration rapidly induced mte1 mRNA in cardiac and skeletal muscle. WY-14643 also induced mte1 mRNA in isolated adult rat cardiomyocytes dose dependently. Expression of mte1 was markedly lower in hearts and soleus muscles isolated from PPARα-null mice. Alterations in cardiac and skeletal muscle ucp3 expression mirrored that of mte1 in all models investigated. In conclusion, mte1, like ucp3, is a PPARα-regulated gene in cardiac and skeletal muscle.


2008 ◽  
Vol 294 (2) ◽  
pp. E357-E364 ◽  
Author(s):  
Pawel Dobrzyn ◽  
Harini Sampath ◽  
Agnieszka Dobrzyn ◽  
Makoto Miyazaki ◽  
James M. Ntambi

Stearoyl-CoA desaturase (SCD) is a lipogenic enzyme that catalyzes the synthesis of monounsaturated fatty acids (FA). SCD1 deficiency activates metabolic pathways that promote FA β-oxidation and decrease lipogenesis in liver. In the present study, we show that FA transport and oxidation are decreased, whereas glucose uptake and oxidation are increased in the heart of SCD1−/− mice. Protein levels of FA transport proteins such as FA translocase/CD36 and FA transport protein as well as activity of carnitine palmitoyltransferase 1, the rate-limiting enzyme for mitochondrial fat oxidation, were significantly lower in the heart of SCD1−/− mice compared with SCD1+/+ mice. Consequently, the rate of palmitoyl-CoA oxidation was decreased significantly in the heart of SCD1−/− mice. mRNA levels of peroxisome proliferator-activated receptor-α, a key transcription factor controlling genes of FA oxidation, were significantly reduced in SCD1−/− mice. Phosphorylation of insulin receptor substrate-1 (IRS-1) and the association of αp85 subunit of phosphatidylinositol 3-kinase with IRS-1 were significantly higher under both basal and insulin-stimulated conditions in SCD1−/− hearts. This increased insulin sensitivity translated to a 1.8-fold greater 2-deoxyglucose uptake and 2-fold higher rate of glucose oxidation in the myocardium compared with SCD1+/+ counterparts. The results suggest that SCD1 deficiency causes a shift in cardiac substrate utilization from FA to glucose by upregulating insulin signaling, decreasing FA availability, and reducing expression of FA oxidation genes in the heart. This increase in cardiac insulin sensitivity and glucose utilization due to SCD1 deficiency could prove therapeutic in pathological conditions such as obesity that are characterized by skewed cardiac substrate utilization.


2019 ◽  
Author(s):  
L.A Baker ◽  
N.R.W Martin ◽  
D.J Player ◽  
M.P Lewis

AbstractControl of skeletal muscle fat metabolism is regulated acutely through Peroxisome Proliferator Activated Receptor (PPAR) δ activation and its downstream intracellular targets. The purpose of this study was to determine whether fatty acids with high binding affinity for PPARδ can elevate the expression of genes related to fatty acid oxidation and indicators of mitochondrial biogenesis in cultured human skeletal myotubes. Myotubes were treated for 72 hours with one of four conditions: (i) Control (CON); (ii) Eicosapentaenoic acid (EPA 250μM); (iii) γ-linolenic acid (γ-LA 250μM); (iv) PPARδ Agonist (GW501516 10nM). Incubation with γ-LA induced increases in the gene expression of CD36 (p= 0.005), HADHA (p= 0.022) and PDK4 (p=0.025) in comparison with CON, with no further differences observed between conditions. Furthermore, intensity of MitoTracker® Red immunostaining in myotubes increased following incubation with γ-LA (p≤ 0.001) and EPA (p= 0.005) however these trends were not mirrored in the expression of PGC-1α as might be expected. Overall, γ-LA elevates levels the transcription of key intracellular regulators of lipid metabolism and transport in human myotubes, which may be clinically beneficial in the control of metabolic diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
KyeongJin Kim ◽  
Jin Ku Kang ◽  
Young Hoon Jung ◽  
Sang Bae Lee ◽  
Raffaela Rametta ◽  
...  

AbstractIncreased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 375-382 ◽  
Author(s):  
Sandrine Gremlich ◽  
Christopher Nolan ◽  
Raphaël Roduit ◽  
Rémy Burcelin ◽  
Marie-Line Peyot ◽  
...  

The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-α (PPARα)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARα null (PPARαKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARα expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARα expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARαKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARα null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARα, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARα, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.


2012 ◽  
Vol 303 (10) ◽  
pp. E1222-E1233 ◽  
Author(s):  
Assunta Lombardi ◽  
Rita De Matteis ◽  
Maria Moreno ◽  
Laura Napolitano ◽  
Rosa Anna Busiello ◽  
...  

Iodothyronines such as triiodothyronine (T3) and 3,5-diiodothyronine (T2) influence energy expenditure and lipid metabolism. Skeletal muscle contributes significantly to energy homeostasis, and the above iodothyronines are known to act on this tissue. However, little is known about the cellular/molecular events underlying the effects of T3 and T2 on skeletal muscle lipid handling. Since FAT/CD36 is involved in the utilization of free fatty acids by skeletal muscle, specifically in their import into that tissue and presumably their oxidation at the mitochondrial level, we hypothesized that related changes in lipid handling and in FAT/CD36 expression and subcellular redistribution would occur due to hypothyroidism and to T3 or T2 administration to hypothyroid rats. In gastrocnemius muscles isolated from hypothyroid rats, FAT/CD36 was upregulated (mRNA levels and total tissue, sarcolemmal, and mitochondrial protein levels). Administration of either T3 or T2 to hypothyroid rats resulted in 1) little or no change in FAT/CD36 mRNA level, 2) a decreased total FAT/CD36 protein level, and 3) further increases in FAT/CD36 protein level in sarcolemma and mitochondria. Thus, the main effect of each iodothyronine seemed to be exerted at the level of FAT/CD36 cellular distribution. The effect of further increases in FAT/CD36 protein level in sarcolemma and mitochondria was already evident at 1 h after iodothyronine administration. Each iodothyronine increased the mitochondrial fatty acid oxidation rate. However, the mechanisms underlying their rapid effects seem to differ; T2 and T3 each induce FAT/CD36 translocation to mitochondria, but only T2 induces increases in carnitine palmitoyl transferase system activity and in the mitochondrial substrate oxidation rate.


Sign in / Sign up

Export Citation Format

Share Document