scholarly journals Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner

2016 ◽  
Vol 310 (11) ◽  
pp. E947-E957 ◽  
Author(s):  
Rui Wei ◽  
Shifeng Ma ◽  
Chen Wang ◽  
Jing Ke ◽  
Jin Yang ◽  
...  

Glucagon-like peptide-1 (GLP-1) may have direct favorable effects on cardiovascular system. The aim of this study was to investigate the effects of the GLP-1 analog exenatide on improving coronary endothelial function in patients with type 2 diabetes and to investigate the underlying mechanisms. The newly diagnosed type 2 diabetic subjects were enrolled and given either lifestyle intervention or lifestyle intervention plus exenatide treatment. After 12-wk treatment, coronary flow velocity reserve (CFVR), an important indicator of coronary endothelial function, was improved significantly, and serum levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) were remarkably decreased in the exenatide treatment group compared with the baseline and the control group. Notably, CFVR was correlated inversely with hemoglobin A1c (Hb A1c) and positively with high-density lipoprotein cholesterol (HDL-C). In human umbilical vein endothelial cells, exendin-4 (a form of exenatide) significantly increased NO production, endothelial NO synthase (eNOS) phosphorylation, and GTP cyclohydrolase 1 (GTPCH1) level in a dose-dependent manner. The GLP-1 receptor (GLP-1R) antagonist exendin (9–39) or GLP-1R siRNA, adenylyl cyclase inhibitor SQ-22536, AMPK inhibitor compound C, and PI3K inhibitor LY-294002 abolished the effects of exendin-4. Furthermore, exendin-4 reversed homocysteine-induced endothelial dysfunction by decreasing sICAM-1 and reactive oxygen species (ROS) levels and upregulating NO production and eNOS phosphorylation. Likewise, exendin (9–39) diminished the protective effects of exendin-4 on the homocysteine-induced endothelial dysfunction. In conclusion, exenatide significantly improves coronary endothelial function in patients with newly diagnosed type 2 diabetes. The effect may be mediated through activation of AMPK/PI3K-Akt/eNOS pathway via a GLP-1R/cAMP-dependent mechanism.

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Tomas Vaisar ◽  
Erica Couzens ◽  
Arnold Hwang ◽  
Andrew N Hoofnagle ◽  
Carolyn E Barlow ◽  
...  

Aim: One of the hallmarks of diabetes is impaired endothelial function. High density lipoproteins (HDL) can exert protective effects on endothelium stimulating NO production and protecting from inflammation. Previous study suggested that HDL in obese people with diabetes and metabolic syndrome and markedly low HDL-C lost endothelial protective function. We aimed to test whether type 2 diabetes impairs HDL endothelium protective functions in people with otherwise normal lipid profile. Methods: In a case-control study (n=40 per group) nested in the Cooper Center Longitudinal Study, we isolated HDL and measured its ability to stimulate activity of endothelial nitric oxide synthase (eNOS; phosphorylation of Ser1177) in endothelial cells and the ability of HDL to suppress inflammatory response of endothelial cells (NFkB activation). Additionally, we also measured by LCMS levels of sphingosine-1-phosphate (S1P) and plasma P-selectin by ELISA. Results: The HDL in people with type 2 diabetes lost almost 40% of its ability to stimulate eNOS activity (P<0.001) and 20% of its ability to suppress inflammation in endothelial cells ( P <0.001) compared to non-diabetic controls despite similar BMI and lipid profile (HDL-C, LDL-C, TC, TG).The ability of HDL to stimulate eNOS activity was negatively associated with plasma levels of P-selectin, an established marker of endothelial dysfunction (r=–0.32, P <0.001). Furthermore, sphingosine-1-phosphate (S1P) levels were decreased in plasma of people with diabetes ( P =0.017) and correlated strongly with HDL-mediated eNOS activation. Conclusions: Collectively, our data suggest that HDL in individuals with type 2 diabetes loses its ability to maintain proper endothelial function independent of HDL-C, perhaps due to loss of S1P, and may contribute to development of diabetic complications.


2008 ◽  
Vol 86 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Syamantak Majumder ◽  
Ajit Muley ◽  
Gopi Krishna Kolluru ◽  
Samir Saurabh ◽  
K. P. Tamilarasan ◽  
...  

Cadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L. Cd perturbations in endothelial function were studied by employing wound-healing and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. The results suggest that a CdCl2 concentration of 100 nmol/L maximally attenuated NO production, cellular migration, and energy metabolism in endothelial cells. An egg yolk angiogenesis model was employed to study the effect of Cd exposure on angiogenesis. The results demonstrate that NO supplementation restored Cd-attenuated angiogenesis. Immunofluorescence, Western blot, and immuno-detection studies showed that low levels of Cd inhibit NO production in endothelial cells by blocking eNOS phosphorylation, which is possibly linked to processes involving endothelial function and dysfunction, including angiogenesis.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1822-1828 ◽  
Author(s):  
Jing Yu ◽  
Masahiro Akishita ◽  
Masato Eto ◽  
Sumito Ogawa ◽  
Bo-Kyung Son ◽  
...  

The mechanisms of testosterone-induced vasodilatation are not fully understood. This study investigated the effect of testosterone on nitric oxide (NO) synthesis and its molecular mechanism using human aortic endothelial cells (HAEC). Testosterone at physiological concentrations (1–100 nm) induced a rapid (15–30 min) increase in NO production, which was associated with phosphorylation and activation of endothelial NO synthase (eNOS). Then, the involvement of the androgen receptor (AR), which is abundantly expressed in HAEC, was examined. The effect of testosterone on eNOS activation and NO production were abolished by pretreatment with an AR antagonist nilutamide and by transfection with AR small interference RNA. In contrast, testosterone-induced eNOS phosphorylation was unchanged by pretreatment with an aromatase inhibitor or by transfection with ERα small interference RNA. 5α-Dihydrotestosterone, a nonaromatizable androgen, also stimulated eNOS phosphorylation. Next, the signaling cascade that leads to eNOS phosphorylation was explored. Testosterone stimulated rapid phosphorylation of Akt in a time- and dose-dependent manner, with maximal response at 15–60 min. The rapid phosphorylation of eNOS or NO production induced by testosterone was inhibited by Akt inhibitor SH-5 or by phosphatidylinositol (PI) 3-kinase inhibitor wortmannin. Co-immunoprecipitation assays revealed a testosterone-dependent interaction between AR and the p85α subunit of PI3-kinase. In conclusion, testosterone rapidly induces NO production via AR-dependent activation of eNOS in HAEC. Activation of PI3-kinase/Akt signaling and the direct interaction of AR with p85α are involved, at least in part, in eNOS phosphorylation.


2018 ◽  
Vol 96 (9) ◽  
pp. 879-885 ◽  
Author(s):  
Thanaporn Sriwantana ◽  
Pornpun Vivithanaporn ◽  
Kittiphong Paiboonsukwong ◽  
Krit Rattanawonsakul ◽  
Sirada Srihirun ◽  
...  

Iron chelation can improve endothelial function. However, effect on endothelial function of deferiprone has not been reported. We hypothesized deferiprone could promote nitric oxide (NO) production in endothelial cells. We studied effects of deferiprone on blood nitrite and blood pressure after single oral dose (25 mg/kg) in healthy subjects and hemoglobin E/β-thalassemia patients. Further, effects of deferiprone on NO production and endothelial NO synthase (eNOS) phosphorylation in primary human pulmonary artery endothelial cells (HPAEC) were investigated in vitro. Blood nitrite levels were higher in patients with deferiprone therapy than those without deferiprone (P = 0.023, n = 16 each). Deferiprone increased nitrite in plasma and whole blood of healthy subjects (P = 0.002 and 0.044) and thalassemia patients (P = 0.003 and 0.046) at time 180 min (n = 20 each). Asymptomatic reduction in diastolic blood pressure (P = 0.005) and increase in heart rate (P = 0.009) were observed in healthy subjects, but not in thalassemia patients. In HPAEC, deferiprone increased cellular nitrite and phospho-eNOS (Ser1177) (P = 0.012 and 0.035, n = 6) without alteration in total eNOS protein and mRNA. We conclude that deferiprone can induce NO production by enhancing eNOS phosphorylation in endothelial cells.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Jithin Kuriakose ◽  
Augusto C Montezano ◽  
Katie Y Hood ◽  
Rheure Alves-lopes ◽  
Angie Sin ◽  
...  

Mas and ET B receptors physically interact in endothelial cells (ECs) and are involved in the protective actions of angiotensin 1-7 (Ang (1-7)). We assessed whether the MAS/ET B R interaction plays a role in EC signalling and whether strategies to enhance MAS/ET B R association influence vascular responses. Human ECs were stimulated with Ang (1-7) (10 -7 M) in the presence/absence of A779 (Mas receptor antagonist, 10 -5 M) and BQ788 (ET B R antagonist, 10 -5 M). Protein expression and signalling activation were assessed by immunoblotting. NO production was evaluated by DAF-FM fluorescence and ROS production by chemiluminescence (superoxide anion) or amplex red (hydrogen peroxide (H 2 O 2 )). mRNA expression was assessed by qPCR. Endothelial function was assessed in mouse intact arteries by myography. Ang (1-7), through Mas and ET B R induced phosphorylation of eNOS (35%); followed by an increase in NO production (2.0 fold) (p<0.05 vs ctl). High throughput screening of protein:protein interaction compounds in an in-house library identified 23 potential enhancers of the MAS/ET B R interaction. Fluorescence polarization assays were used to further select the most potent enhancers and define their working concentration for testing in ECs (Enh1-4: 10 -5 M). Enh4 increased superoxide anion (55.6±26.3% vs ctl, p<0.05) and H 2 O 2 production (54.7±11.1% vs ctl, p<0.05), while Enh3 increased H 2 O 2 generation (48.1±15.4% vs ctl, p<0.05) in ECs. Moreover, Enh4 increased Nrf2 (3.0 fold), Sod1 (2.0 fold) and Nqo1 (3.1 fold) mRNA expression (p<0.05 vs ctl). Enh3 and Enh4 increased NO production (Enh3: 21.2±7.4%; Enh4: 23.6±8.2% vs veh, p<0.05) in ECs. Acetylcholine (Ach) curves were performed to assess endothelium-dependent relaxation in the absence and presence of enhancers. Enh4 increased ACh-induced relaxation (Emax%: 96.7±4.6 vs ctl: 70.4±3.3, p<0.05), while other enhancers did not improve endothelial function. Taken together, increasing MAS/ET B R interaction with specific enhancers augments protective signalling in ECs and promotes endothelial-dependent vasorelaxation, particularly with Enh4. In conclusion, enhancing interactions between MasR and ET B R may be a new vasoprotective strategy to improve vascular function in cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document