Reproductive physiology of a humanized GnRH receptor mouse model: application in evaluation of human-specific analogs

2013 ◽  
Vol 305 (1) ◽  
pp. E67-E77 ◽  
Author(s):  
Javier A. Tello ◽  
Trudy Kohout ◽  
Rafael Pineda ◽  
Richard A. Maki ◽  
R. Scott Struthers ◽  
...  

The human GnRH receptor (GNRHR1) has a specific set of properties with physiological and pharmacological influences not appropriately modeled in laboratory animals or cell-based systems. To address this deficiency, we have generated human GNRHR1 knock-in mice and described their reproductive phenotype. Measurement of pituitary GNRHR1 transcripts from homozygous human GNRHR1 knock-in ( ki/ ki) mice revealed a severe reduction (7- to 8-fold) compared with the mouse Gnrhr1 in wild-type mice. 125I-GnRH binding assays on pituitary membrane fractions corroborated reduced human GNRHR1 protein expression in ki/ ki mice, as occurs with transfection of human GNRHR1 in cell lines. Female homozygous knock-in mice displayed normal pubertal onset, indicating that a large reduction in GNRHR1 expression is sufficient for this process. However, ki/ ki females exhibited periods of prolonged estrous and/or metestrous and reduced fertility. No impairment was found in reproductive maturity or adult fertility in male ki/ ki mice. Interestingly, the serum LH response to GnRH challenge was reduced in both knock-in males and females, indicating a reduced GNRHR1 signaling capacity. Small molecules targeting human GPCRs usually have poor activities at homologous rodent receptors, thus limiting their use in preclinical development. Therefore, we tested a human-specific GnRH1 antagonist, NBI-42902, in our mouse model and demonstrated abrogation of a GnRH1-induced serum LH rise in ki/ ki mice and an absence of effect in littermates expressing the wild-type murine receptor. This novel model provides the opportunity to study the human receptor in vivo and for screening the activity of human-specific GnRH analogs.

2018 ◽  
Vol 16 (1) ◽  
pp. 49-55 ◽  
Author(s):  
J. Stenzel ◽  
C. Rühlmann ◽  
T. Lindner ◽  
S. Polei ◽  
S. Teipel ◽  
...  

Background: Positron-emission-tomography (PET) using 18F labeled florbetaben allows noninvasive in vivo-assessment of amyloid-beta (Aβ), a pathological hallmark of Alzheimer’s disease (AD). In preclinical research, [<sup>18</sup>F]-florbetaben-PET has already been used to test the amyloid-lowering potential of new drugs, both in humans and in transgenic models of cerebral amyloidosis. The aim of this study was to characterize the spatial pattern of cerebral uptake of [<sup>18</sup>F]-florbetaben in the APPswe/ PS1dE9 mouse model of AD in comparison to histologically determined number and size of cerebral Aβ plaques. Methods: Both, APPswe/PS1dE9 and wild type mice at an age of 12 months were investigated by smallanimal PET/CT after intravenous injection of [<sup>18</sup>F]-florbetaben. High-resolution magnetic resonance imaging data were used for quantification of the PET data by volume of interest analysis. The standardized uptake values (SUVs) of [<sup>18</sup>F]-florbetaben in vivo as well as post mortem cerebral Aβ plaque load in cortex, hippocampus and cerebellum were analyzed. Results: Visual inspection and SUVs revealed an increased cerebral uptake of [<sup>18</sup>F]-florbetaben in APPswe/ PS1dE9 mice compared with wild type mice especially in the cortex, the hippocampus and the cerebellum. However, SUV ratios (SUVRs) relative to cerebellum revealed only significant differences in the hippocampus between the APPswe/PS1dE9 and wild type mice but not in cortex; this differential effect may reflect the lower plaque area in the cortex than in the hippocampus as found in the histological analysis. Conclusion: The findings suggest that histopathological characteristics of Aβ plaque size and spatial distribution can be depicted in vivo using [<sup>18</sup>F]-florbetaben in the APPswe/PS1dE9 mouse model.


2007 ◽  
Vol 75 (9) ◽  
pp. 4342-4350 ◽  
Author(s):  
Manuela Raffatellu ◽  
Renato L. Santos ◽  
Daniela Chessa ◽  
R. Paul Wilson ◽  
Sebastian E. Winter ◽  
...  

ABSTRACT The viaB locus contains genes for the biosynthesis and export of the Vi capsular antigen of Salmonella enterica serotype Typhi. Wild-type serotype Typhi induces less CXC chemokine production in tissue culture models than does an isogenic viaB mutant. Here we investigated the in vivo relevance of these observations by determining whether the presence of the viaB region prevents inflammation in two animal models of gastroenteritis. Unlike S. enterica serotype Typhimurium, serotype Typhi or a serotype Typhi viaB mutant did not elicit marked inflammatory changes in the streptomycin-pretreated mouse model. In contrast, infection of bovine ligated ileal loops with a serotype Typhi viaB mutant resulted in more fluid accumulation and higher expression of the chemokine growth-related oncogene alpha (GROα) and interleukin-17 (IL-17) than did infection with the serotype Typhi wild type. There was a marked upregulation of IL-17 expression in both the bovine ligated ileal loop model and the streptomycin-pretreated mouse model, suggesting that this cytokine is an important component of the inflammatory response to infection with Salmonella serotypes. Introduction of the cloned viaB region into serotype Typhimurium resulted in a significant reduction of GROα and IL-17 expression and in reduced fluid secretion. Our data support the idea that the viaB region plays a role in reducing intestinal inflammation in vivo.


2021 ◽  
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Wen-Hsin Lee ◽  
Sandhya Bangaru ◽  
Andrew B Ward ◽  
...  

After first emerging in December 2019 in China, severe acute respiratory syndrome 2 (SARS-CoV-2) has since caused a pandemic leading to millions of infections and deaths worldwide. Vaccines have been developed and authorized but supply of these vaccines is currently limited. With new variants of the virus now emerging and spreading globally, it is essential to develop therapeutics that are broadly protective and bind conserved epitopes in the receptor binding domain (RBD) or the whole spike of SARS-CoV-2. In this study, we have generated mouse monoclonal antibodies (mAbs) against different epitopes on the RBD and assessed binding and neutralization against authentic SARS-CoV-2. We have demonstrated that antibodies with neutralizing activity, but not non-neutralizing antibodies, lower viral titers in the lungs when administered in a prophylactic setting in vivo in a mouse challenge model. In addition, most of the mAbs cross-neutralize the B.1.351 as well as the B.1.1.7 variants in vitro.


2004 ◽  
Vol 48 (1) ◽  
pp. 80-85 ◽  
Author(s):  
E. Azoulay-Dupuis ◽  
J. Mohler ◽  
J. P. Bédos

ABSTRACT The efficacy of BB-83698, a novel potent peptide deformylase inhibitor, was evaluated in a mouse model of acute pneumonia. The Streptococcus pneumoniae isolates tested included four virulent strains (one penicillin-susceptible wild-type strain, one macrolide-resistant strain, and two quinolone-resistant mutants [a mutant carrying mutations in ParC and GyrA and an efflux mutant] isogenic to the wild type) and two poorly virulent penicillin-resistant strains. Pneumonia was induced by intratracheal inoculation of 105 CFU (virulent strains) into immunocompetent mice or 107 CFU (less virulent strains) into leukopenic mice. Animals received three or six subcutaneous injections of antibiotics at 12- or 24-h intervals, with antibiotic treatment initiated at 3, 6, 12, or 18 h postinfection (p.i.). BB-83698 showed potent in vitro activity against all strains (MICs, 0.06 to 0.25 μg/ml). In the in vivo model, all control animals died within 2 to 5 days of infection. BB-83698 (80 mg/kg of body weight twice daily or 160 mg/kg once daily) protected 70 to 100% of the animals, as measured 10 days p.i., regardless of the preexisting resistance mechanisms. In contrast, the survival rates for animals treated with the comparator antibiotics were 30% for animals treated with erythromycin (100 mg/kg) and infected with the macrolide-resistant strain, 34% for animals treated with amoxicillin (200 mg/kg every 8 h) and infected with the penicillin-resistant strain, and 0 and 78% for animals treated with ciprofloxacin (250 mg/kg) and infected with the ParC and GyrA mutant and the efflux mutant, respectively. At 80 mg/kg, BB-83698 generated a peak concentration in lung tissue of 61.9 μg/ml within 1 h and areas under the concentration-times curves of 57.4 and 229.4 μg · h/ml for plasma and lung tissue, respectively. The emergence of S. pneumoniae isolates with reduced susceptibilities to BB-83698 was not observed following treatment with a suboptimal dosing regimen. In conclusion, the potent in vitro activity of BB-83698 against S. pneumoniae, including resistant strains, translates into good in vivo efficacy in a mouse pneumonia model.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2936-2936
Author(s):  
Porsha L. Smith ◽  
Fengting Yan ◽  
John T. Patton ◽  
Lapo Alinari ◽  
Vrajesh Karkhanis ◽  
...  

Abstract Introduction: Emerging data collected from whole genome and epigenomic studies in solid and blood cancers has pointed toward dysregulation of chromatin remodelers as a unique class of cancer drivers. Next generation sequencing of lymphoma has identified several mutations affecting enzymes that regulate epigenetic control of gene expression. The epigenetic modifier protein arginine methyltransferase 5 (PRMT5) that has been shown to be essential for Epstein-Barr virus-driven B-cell transformation, is overexpressed in several histologic subtypes of B-cell non-Hodgkin's lymphomas (NHL) and is required for the driver activity of oncogenes such as MYC and NOTCH. While these findings suggest that PRMT5 may act as a driver of lymphomagenesis, definitive experiments to address its driver activity have yet to be performed. To address this question, we developed a transgenic mouse model by immunoglobulin m heavy chain enhancer/promoter (Em)-driven PRMT5 over expression in the lymphoid compartment of FVB/N mice. Methods: Eµ-hPRMT5 transgenic mice were created by injecting a vector containing floxed human PRMT5 under the control of the Eµ enhancer/promoter into FVB/N pronuclei that were implanted into pseudo-pregnant FVB/N mice. We obtained 5 founder lines demonstrating the presence of transgene construct by genotype PCR analysis of tail snip DNA. Founder mice were crossed with wild type FVB/N mice to obtain a F1 generation. Mice were followed clinically in standard pathogen-free housing until exhibiting phenotypic features at which time necropsy was performed. Immunophenotypic analysis was performed by flow cytometry, clonality by T cell receptor (TCR) Vb PCR, and pathology by hematoxylin-eosin staining and tissue micro-arrays developed for immunohistochemical staining (IHCS). Statistical significance was determined using a two-tail t-test and survival analysis conducted using Kaplan Meier curves. Results: F1 generation Eµ-hPRMT5 mice significantly overexpressed PRMT5 mRNA in unpurified splenocytes or bone marrow relative to non-transgenic mice (p-value < 0.001). Sorting B (CD19), NK (NK1.1) and T-cell (CD3) mononuclear subsets from splenocytes collected from Eµ-hPRMT5 mice (n=3/group) revealed PRMT5 mRNA to be overexpressed 37-fold (p-value <0.01), 7-fold (p-value <0.01) and 6-fold (p-value <0.05), respectively compared to WT FVB/N mice. All 5 founder lines were found to develop aggressive lymphomas at a statistically significant higher incidence compared to wild type (WT) FVB/N mice (range 10.7-34.6% lymphomagenesis). Gross anatomical characterization of Lymphoma bearing mice demonstrated focal lymphoid tumors, lymphadenopathy, organomegaly (liver, spleen, kidney), and malignant atypical lymphocytosis. Flow cytometric and IHCS studies showed features consistent with immature pre B and T lymphoblastic lymphomas (LL). Pre B LLs were characterized by high surface IgM, TdT and CD19 expression as analyzed by flow cytometry. Pre T LL demonstrated cytoplasmic CD3, TdT, and CD43 expression. We successfully developed a T LL cell line (Tg813) from a pre T-LL tumor isolated from a thymic tumor. Tg813 was clonal (Vb-17), demonstrated complex cytogenetic features, and over-expressed PRMT5, CYCLIN D1, CYCLIN D3, C-MYC transcript and protein, and the PRMT5 histone mark, symmetric (Me2)-H4R3. Inhibition of PRMT5 with a small molecule inhibitor, shRNA or genetic deletion using CRISPR/CAS9 PRMT5-specific gRNA (targeting exon 2) led to reduced proliferation, apoptosis and loss of CYCLIN D1 and C-MYC expression in Tg813. Engraftment of the Tg813 LL into both SCID and immunocompetent FVB/N mice led to disseminated lymphomas 21 days post-engraftment. In vivo induced expression of PRMT5 gRNA in CAS9+ Tg813 tumors is currently underway. Conclusions:The spontaneous lymphomagenesis observed in the Eµ-hPRMT5 transgenic mouse model supports the hypothesis that PRMT5 over-expression can provide sufficient driver activity for this disease. We describe a novel in vivo and in vitro model of PRMT5-driven LL that provides a useful platform for studying the biologic role of this epigenetic modifier in cancer and for development of PRMT5 targeted therapeutic approaches for lymphoma. Disclosures Baiocchi: Essanex: Research Funding.


2006 ◽  
Vol 74 (12) ◽  
pp. 6907-6919 ◽  
Author(s):  
Andrea Hamilton ◽  
Carl Robinson ◽  
Iain C. Sutcliffe ◽  
Josh Slater ◽  
Duncan J. Maskell ◽  
...  

ABSTRACT Streptococcus equi is the causative agent of strangles, a prevalent and highly contagious disease of horses. Despite the animal suffering and economic burden associated with strangles, little is known about the molecular basis of S. equi virulence. Here we have investigated the contributions of a specific lipoprotein and the general lipoprotein processing pathway to the abilities of S. equi to colonize equine epithelial tissues in vitro and to cause disease in both a mouse model and the natural host in vivo. Colonization of air interface organ cultures after they were inoculated with a mutant strain deficient in the maturase lipoprotein (ΔprtM 138 - 213, with a deletion of nucleotides 138 to 213) was significantly less than that for cultures infected with wild-type S. equi strain 4047 or a mutant strain that was unable to lipidate preprolipoproteins (Δlgt 190 - 685). Moreover, mucus production was significantly greater in both wild-type-infected and Δlgt 190 - 685-infected organ cultures. Both mutants were significantly attenuated compared with the wild-type strain in a mouse model of strangles, although 2 of 30 mice infected with the Δlgt 190 - 685 mutant did still exhibit signs of disease. In contrast, only the ΔprtM 138 - 213 mutant was significantly attenuated in a pony infection study, with 0 of 5 infected ponies exhibiting pathological signs of strangles compared with 4 of 4 infected with the wild-type and 3 of 5 infected with the Δlgt 190 - 685 mutant. We believe that this is the first study to evaluate the contribution of lipoproteins to the virulence of a gram-positive pathogen in its natural host. These data suggest that the PrtM lipoprotein is a potential vaccine candidate, and further investigation of its activity and its substrate(s) are warranted.


2022 ◽  
Author(s):  
Jesus Augusto Vazquez-Rodriguez ◽  
Bahaa Shaqour ◽  
Clara Guarch-Perez ◽  
Emilia Choinska ◽  
Martijn Riool ◽  
...  

Biomaterial-associated infections are a major healthcare challenge as they are responsible for high disease burden in critically ill patients. In this study, we have developed drug-eluting antibacterial catheters to prevent catheter-related infections. Niclosamide (NIC), originally a well-studied antiparasitic drug, was incorporated into the polymeric matrix of thermoplastic polyurethane (TPU) via solvent casting, and catheters were fabricated using hot-melt extrusion technology. The mechanical and physicochemical properties of TPU polymers loaded with NIC were studied. NIC was released in a sustained manner from the catheters and exhibited antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis in different in vitro models. Moreover, the antibacterial efficacy of NIC-loaded catheters was validated in an in vivo biomaterial-associated infection mouse model using a methicillin-susceptible and methicillin-resistant strain of S. aureus. The released NIC from the produced catheters reduced bacterial colonization of the catheter as well as of the surrounding tissue. A sustained in vivo release of NIC from the catheters for at least 14 days was observed. In summary, the NIC-releasing hot-melt extruded catheters prevented implant colonization and reduced the bacterial colonization of peri-catheter tissue by methicillin sensitive as well as resistant S. aureus in a biomaterial-associated infection mouse model and has good prospects for preclinical development.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1730-1730
Author(s):  
Eva Szenes ◽  
Andrea Härzschel ◽  
Erika Tissino ◽  
Pischeli Justine ◽  
Julia Gutjahr ◽  
...  

Introduction. Ibrutinib, a small molecule inhibitor of Bruton's tyrosine kinase (BTK), has proven to be an efficient treatment for chronic lymphocytic leukemia (CLL). A distinct characteristic of ibrutinib therapy is transient lymphocytosis. Recently, we have demonstrated that CLL patients with high levels of CD49d show reduced lymphocytosis and inferior nodal response under ibrutinib due to residual activity of BCR-induced inside-out activation of the CD49d/CD29 integrin VLA-4 (Tissino E et al. J Exp Med. 2018;215(2):681-697). Here, we used Tcl1 transgenic (tg) mice as a model to further validate the observation of VLA-4 activation under ibrutinib and to study involved signaling pathways and the effect of VLA-4 inhibition in vivo. Methods. Surface receptor expression analysis of various receptors was performed by flow cytometry. The phosphorylation of signaling molecules was measured by phosflow and western blotting. VLA-4 affinity state was determined by a real-time kinetic assay described in Chigaev A et al. J Biol Chem. 2001;276(52):48670-8. To analyze the distribution of individual VLA-4 molecules on the cell surface, immunofluorescence approaches and superresolution microscopy (STORM, Abbelight) were employed. Mouse treatment studies were performed upon transplantation of TCL1-tg splenocytes to wild-type C57BL/6J mice using the small molecule VLA-4 inhibitor firategrast in drinking water. Tumor infiltration of different organs was measured by flow cytometry. Results. Analyzing the surface expression of CD49d and other homing receptors, we found that TCL1-tg mice correspond with the CD49d-high CLL cohort. We found that both CLL cells from TCL1-tg mice and human CD49d-high CLL show similar CD49d expression levels as the corresponding healthy B cells (human: N = 116 CD49d-high CLL and 32 healthy donor, P = 0.8717; mouse: N = 12 per group, P = 0.6845). Next, we analyzed the impact of BCR pathway inhibitors on the phosphorylation of signaling molecules involved in the BCR pathway after activation by anti-IgM (aIgM) in TCL1-tg leukemic cells. Ibrutinib and idelalisib showed specific patterns of inhibition of BTK and PI3K, respectively. The combination of ibrutinib and idelalisib proved to be the most efficient in reducing the phosphorylation of BTK, SYK, ERK1/2 and Akt upon IgM activation, compared to the phosphorylation of stimulated cells without inhibition (N = 6, P = 0.0003, 0.0305, 0.0039, 0.0019, respectively). IgM stimulation induced VLA-4 high affinity as well as a reorganization of VLA-4 molecules on the cell surface, forming areas of high VLA-4 density. BCR-induced inside-out activation of VLA-4 remained functional upon treatment with ibrutinib (N = 5, cnt vs aIgM P = 0.0017, cnt vs ibrutinib+aIgM P = 0.0499), while idelalisib reduced VLA-4 activation more effectively (N = 5, cnt vs aIgM P = 0.0014, cnt vs idelalisib+aIgM P = 0.0803), suggesting a pivotal role of PI3K in the transmission of the exogenous antigen signal to the integrin. Finally, to analyze the potential of VLA-4 blockage in a tumor setting similar to VLA-4-high CLL patients, we treated wild-type C57BL/6J mice (N = 6 mice per group), which were transplanted with TCL1-tg splenocytes, with the CD49d inhibitor firategrast. This treatment reduced the tumor load in spleen and bone marrow. Conclusion. We found that the TCL1-tg mouse model is adequate to study the activity of the BCR-VLA-4 axis in CLL. Using this model, we show that a) BCR stimulation induces both, an increase in VLA-4 affinity as well as avidity (clustering), b) that PI3K is an essential transmitter between BCR and VLA-4, and c) that VLA-4 inhibition alters tumor infiltration patterns in vivo. Synergies of VLA-4 blockage with established therapy options as a possible way of reducing microenvironment-induced resistance development are currently been investigated. Disclosures Egle: Celgene: Honoraria, Other: Advisory board and Travel support. Greil:Eisai: Honoraria; Daiichi Sankyo: Consultancy, Honoraria; Sandoz: Honoraria; Genentech: Honoraria, Research Funding; Cephalon: Consultancy, Honoraria, Research Funding; Sanofi Aventis: Honoraria; Janssen-Cilag: Honoraria; AstraZeneca: Consultancy, Honoraria, Other: Travel/accomodation expenses, Research Funding; GSK: Research Funding; Boehringer Ingelheim: Honoraria; AbbVie: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria, Other: Travel/accomodation expenses, Research Funding; Pfizer: Honoraria, Research Funding; Bristol-Myers-Squibb: Consultancy, Honoraria, Other: Travel/accomodation expenses, Research Funding; Merck: Consultancy, Honoraria, Research Funding; Mundipharma: Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Other: Travel/accomodation expenses, Research Funding; Celgene: Consultancy, Honoraria, Other: Travel/accomodation expenses, Research Funding; Novartis: Consultancy, Honoraria, Other: Travel/accomodation expenses, Research Funding; MSD: Consultancy, Honoraria, Other: Travel/accomodation expenses, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Ratiopharm: Research Funding; Gilead: Consultancy, Honoraria, Other: Travel/accomodation expenses, Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2697-2697
Author(s):  
Elise Roy ◽  
Paris Margaritis ◽  
Harre D. Downey ◽  
Katherine A. High

Abstract The complex and dynamic interplay between the intrinsic and extrinsic pathways of blood coagulation is incompletely understood. The mediator of prothrombin cleavage, Factor X (FX), plays a pivotal role as part of both the extrinsic and intrinsic tenase complexes. Moreover, the existence of naturally occurring Factor X mutations that can be asymmetrically activated through one but not both of these pathways affords one strategy for analyzing the relationship of the two pathways. The Factor X Roma (FXRoma) variant, originally described in a patient with mild bleeding tendency (severe following trauma, De Stefano et al., 1988), is due to a missense mutation (Thr318←Met) in exon 8. Coagulation testing revealed markedly decreased activity (1–3% wild-type) in the intrinsic pathway as measured by aPTT, but substantially higher activity (30–50% wild-type) in the extrinsic pathway as measured by PT. We chose to generate a mouse model of FX asymmetric activation to further probe the extrinsic-intrinsic pathway physiological relationship in hemostasis and thrombosis. For this, we used both an in vitro and an in vivo approach. We first constructed and purified the mouse homolog of FXRoma (mFXRoma) as well as wild-type mFX. Using a clotting-based assay, mFXRoma exhibited intrinsic and extrinsic activity comparable to that reported for the human mutation (5% and 18%, respectively). The reduced intrinsic and extrinsic activity of mFXRoma was not due to a secretion defect, based on Western blot analysis of supernatant and cell extracts from mFXRoma and mFX stably-transfected human embryonic kidney (HEK-293) cell lines. Mice homozygous for the analogous mutation (Thr315←Met) in exon 8 of the murine FX gene were generated by using a plug-and-socket approach. This resulted in the endogenous mFX exon 8 sequence being replaced with the mutated one, thus affording gene expression under the endogenous promoter. Analysis of mFXRoma homozygous mice showed a 6.4% and 19.2% intrinsic and extrinsic activity relative to wild-type littermates, respectively, confirming our in vitro data. The reduced activity in these mice resulted in a slight reduction in levels of the thrombin-antithrombin (TAT) complex. To determine any physiological defect of this mutation on the two pathways of coagulation, we performed two hemostatic challenges of the macrocirculation (tail clip and FeCl3-induced thrombus formation). In the tail-clip assay, blood loss showed no statistical difference between wild-type (n=5) and mFXRoma (n=6) mice. In contrast, following FeCl3-induced injury on the carotid artery (larger vessel diameter that in the tail), mFXRoma mice (3/3) failed to result in vessel occlusion (up to 30 min of observation), whereas wild-type littermates showed stable vessel occlusion (3/4) within ∼6 min of FeCl3 application. Although the type of injury was different, these data suggest that an impeded intrinsic activity of FX does not appear to affect hemostasis of the macrocirculation at relatively small diameter vessels but is essential for thrombus formation in large diameter vessels, and a relatively normal extrinsic activity does not compensate for this defect. This mouse model will aid in determining the safety and efficacy of therapeutic approaches based on impeding the intrinsic pathway of coagulation.


Sign in / Sign up

Export Citation Format

Share Document