Differences in renal metabolism of insulin and cytochrome c

1988 ◽  
Vol 254 (4) ◽  
pp. E419-E428 ◽  
Author(s):  
J. Herrman ◽  
R. E. Simmons ◽  
B. H. Frank ◽  
R. Rabkin

Kidneys degrade small proteins such as cytochrome c (CYT c) by the classic lysosomal pathway. However, because alternate routes for the transport and degradation of protein hormones have been identified in other tissues, we set out to determine whether extralysosomal sites might participate in the renal degradation of insulin. First, we compared the effect of the lysosomal inhibitor NH4Cl on insulin and CYT c degradation by isolated perfused rat kidneys. After kidneys were loaded with radiolabeled proteins to allow for absorption and transport to lysosomes, degradation was measured in the presence or absence of inhibitors. Control kidneys degraded 45 +/- 1.5% of the trapped CYT c per hour, and this was inhibited 62 +/- 1.3% by NH4Cl. In contrast, 86 +/- 2.4% of the trapped insulin was degraded per hour, and this was inhibited 26 +/- 4% by NH4Cl. Next we followed the subcellular distribution of 125I-labeled insulin in kidneys exposed to 125I-labeled insulin in vivo or when isolated and perfused. Under both circumstances the distribution of insulin on a linear sucrose gradient differed from that of the lysosomal enzyme N-acetyl-beta-glucosaminidase. In contrast, [14CH3]CYT c, injected in vivo, distributed over a density similar to the lysosomal marker. Thus important differences exist between the renal metabolism of CYT c, which proceeds in lysosomes, and the renal metabolism of insulin. These include rate of degradation, sensitivity to NH4Cl, and subcellular sites of localization. Accordingly, we suggest that insulin degradation may occur, at least in part, in a different compartment from the classic lysosomal site of protein degradation.

2021 ◽  
Author(s):  
Prabhat Tripathi ◽  
Abdelkrim Benabbas ◽  
Behzad Mehrafrooz ◽  
Hirohito Yamazaki ◽  
Aleksei Aksimentiev ◽  
...  

AbstractMany small proteins move across cellular compartments through narrow pores. In order to thread a protein through a constriction, free energy must be overcome to either deform or completely unfold the protein. In principle, the diameter of the pore, along with the effective driving force for unfolding the protein, as well as its barrier to translocation, should be critical factors that govern whether the process proceeds via squeezing, unfolding/threading, or both. To probe this for a well-established protein system, we studied the electric-field-driven translocation behavior of cytochrome c (cyt c) through ultrathin silicon nitride (SiNx) solid-state nanopores of diameters ranging from 1.5 to 5.5 nm. For a 2.5 nm diameter pore we find that, in a threshold electric field regime of ∼30-100 MV/m, cyt c is able to squeeze through the pore. As electric fields inside the pore are increased, the unfolded state of cyt c is thermodynamically stabilized, facilitating its translocation. In contrast, for 1.5 nm and 2.0 nm diameter pores, translocation occurs only by threading of the fully unfolded protein after it transitions through a higher energy unfolding intermediate state at the mouth of the pore. The relative energies between the metastable, intermediate, and unfolded protein states are extracted using a simple thermodynamic model that is dictated by the relatively slow (∼ms) protein translocation times for passing through the nanopore. These experiments map the various modes of protein translocation through a constriction, which opens new avenues for exploring protein folding structures, internal contacts, and electric field-induced deformability.Significance StatementCan localized electric fields drive the complete unfolding of a protein molecule? Protein unfolding prior to its translocation through a nanopore constriction is an important step in protein transport across biological membranes and also an important step in nanopore-based protein sequencing. We studied here the electric-field-driven translocation behavior of a model protein (cyt c) through nanopores of diameters ranging from 1.5 to 5.5 nm. These single molecule measurements show that electric fields at the nanopore constriction can select both partially and fully unfolded protein conformations. Zero-field free energy gaps between these conformations, found using a simple thermodynamic model, are in remarkable agreement with previously reported studies of cyt c unfolding energetics.


2001 ◽  
Vol 354 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Joseph E. BAGGOTT ◽  
Constance B. ROBINSON ◽  
Kelly E. JOHNSTON

The bio-inactive C-6 isomer, [6R]-5-formyl-tetrahydrofolate (5-HCO-H4F), is not found in Nature. An oral dose of 13.5µmol of [6R]-5-HCO-H4F in humans results in the appearance of the naturally occurring [6S]-5-methyl-tetrahydrofolate and relatively large amounts of other bioactive folates in plasma. The removal of the asymmetry at C-6 could account for these results. Two oxidized cytochrome c [cyt c (Fe3+)] molecules oxidize one 10-formyl-tetrahydrofolate (10-HCO-H4F) with second-order kinetics and a rate constant of 1.3×;104 M-1·s-1. The folate product of this oxidation reaction is 10-formyl-dihydrofolate (10-HCO-H2F), which has no C-6 asymmetric centre and is therefore bioactive. The folate-requiring bacterium, Enterococcus hirae, does not normally biosynthesize cytochromes but does so when given an exogenous source of haem (e.g. haemin). E. hirae grown in haemin-supplemented media for 3 days utilizes both [6R]- and [6S]-5-HCO-H4F in contrast to that grown in control medium, which utilizes only the [6S] isomer. Since known chemical reactions form 10-HCO-H4F from 5-HCO-H4F, the unusually large rate constant for the oxidation of 10-HCO-H4F by cyt c (Fe3+) may account for the unexpected bioactivity of [6R]-5-HCO-H4F in humans and in E. hirae grown in haemin-containing media. We used an unnatural C-6 folate isomer as a tool to reveal the possible in vivo oxidation of 10-HCO-H4F to 10-HCO-H2F; however, nothing precludes this oxidation from occurring in vivo with the natural C-6 isomer.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1215
Author(s):  
Vanessa Barcelo-Bovea ◽  
Irivette Dominguez-Martinez ◽  
Freisa Joaquin-Ovalle ◽  
Luis A. Amador ◽  
Elizabeth Castro-Rivera ◽  
...  

The delivery of Cytochrome c (Cyt c) to the cytosol stimulates apoptosis in cells where its release from mitochondria and apoptotic induction is inhibited. We developed a drug delivery system consisting of Cyt c nanoparticles decorated with folate-poly(ethylene glycol)-poly(lactic-co-glycolic acid)-thiol (FA-PEG-PLGA-SH) to deliver Cyt c into cancer cells and tested their targeting in the Lewis Lung Carcinoma (LLC) mouse model. Cyt c-PLGA-PEG-FA nanoparticles (NPs) of 253 ± 55 and 354 ± 11 nm were obtained by Cyt c nanoprecipitation, followed by surface decoration with the co-polymer SH-PLGA-PEG-FA. The internalization of Cyt c-PLGA-PEG-FA nanoparticles (NPs) in LLC cells was confirmed by confocal microscopy. NP caspase activation was more efficient than the NP-free formulation. Caspase activity assays showed NPs retained 88–96% Cyt c activity. The NP formulations were more effective in decreasing LLC cell viability than NP-free formulation, with IC50 49.2 to 70.1 μg/mL versus 129.5 μg/mL, respectively. Our NP system proved to be thrice as selective towards cancerous than normal cells. In vivo studies using near infrared-tagged nanoparticles show accumulation in mouse LLC tumor 5 min post-injection. In conclusion, our NP delivery system for Cyt c shows superiority over the NP-free formulation and reaches a folic acid-overexpressing tumor in an immune-competent animal model.


Author(s):  
Vanessa Barcelo-Bovea ◽  
Irivette Dominguez-Martinez ◽  
Freisa Joaquin-Ovalle ◽  
Luis A. Amador ◽  
Elizabeth Castro-Rivera ◽  
...  

The delivery of Cytochrome c (Cyt c) to the cytosol stimulates apoptosis in cells were its release from mitochondria and apoptosis induction is inhibited. We developed a drug delivery system consisting of Cyt c nanoparticles decorated with folate-poly(ethylene glycol)-poly(lactic-co-glycolic acid)-thiol (FA-PEG-PLGA-SH) to deliver Cyt c into cancer cells and test their targeting in the Lewis Lung Carcinoma (LLC) mouse model. Cyt c-PLGA-PEG-FA nanoparticles (NPs) of 253 ± 55 and 354 ± 11 nm were obtained by Cyt c nanoprecipitation, followed by surface decoration with the co-polymer SH-PLGA-PEG-FA, and compared to a nanoparticle-free formulation. Overexpression of FA in LLC cells and internalization of Cyt c-PLGA-PEG-FA nanoparticles (NPs) was confirmed by confocal microscopy. Caspase activation assays show NPs retain 88-96% Cyt c activity. The NP formulations were more efficient in decreasing LLC cell viability than the NP-free formulation, with IC50: 49.2 to 70.1 μg/ml versus 129.5 μg/ml, respectively. Our NP system is thrice as selective towards cancerous than normal cells. In-vivo studies using tagged nanoparticles show accumulation in mouse LLC tumor 5 min post-injection. In conclusion, our NP delivery system for Cyt c shows superiority over the NP-free formulation and reaches a folic acid-overexpressing tumor in an immune-competent animal model.


1981 ◽  
Vol 45 (03) ◽  
pp. 290-293 ◽  
Author(s):  
Peter H Levine ◽  
Danielle G Sladdin ◽  
Norman I Krinsky

SummaryIn the course of studying the effects on platelets of the oxidant species superoxide (O- 2), Of was generated by the interaction of xanthine oxidase plus xanthine. Surprisingly, gel-filtered platelets, when exposed to xanthine oxidase in the absence of xanthine substrate, were found to generate superoxide (O- 2), as determined by the reduction of added cytochrome c and by the inhibition of this reduction in the presence of superoxide dismutase.In addition to generating Of, the xanthine oxidase-treated platelets display both aggregation and evidence of the release reaction. This xanthine oxidase induced aggreagtion is not inhibited by the addition of either superoxide dismutase or cytochrome c, suggesting that it is due to either a further metabolite of O- 2, or that O- 2 itself exerts no important direct effect on platelet function under these experimental conditions. The ability of Of to modulate platelet reactions in vivo or in vitro remains in doubt, and xanthine oxidase is an unsuitable source of O- 2 in platelet studies because of its own effects on platelets.


Diabetes ◽  
1984 ◽  
Vol 33 (12) ◽  
pp. 1133-1137 ◽  
Author(s):  
B. R. Blazar ◽  
C. B. Whitley ◽  
A. E. Kitabchi ◽  
M. Y. Tsai ◽  
J. Santiago ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 444
Author(s):  
Igor Florez-Sarasa ◽  
Elina Welchen ◽  
Sofia Racca ◽  
Daniel H. Gonzalez ◽  
José G. Vallarino ◽  
...  

Plant respiration provides metabolic flexibility under changing environmental conditions by modulating the activity of the nonphosphorylating alternative pathways from the mitochondrial electron transport chain, which bypass the main energy-producing components of the cytochrome oxidase pathway (COP). While adjustments in leaf primary metabolism induced by changes in day length are well studied, possible differences in the in vivo contribution of the COP and the alternative oxidase pathway (AOP) between different photoperiods remain unknown. In our study, in vivo electron partitioning between AOP and COP and expression analysis of respiratory components, photosynthesis, and the levels of primary metabolites were studied in leaves of wild-type (WT) plants and cytochrome c (CYTc) mutants, with reduced levels of COP components, under short- and long-day photoperiods. Our results clearly show that differences in AOP and COP in vivo activities between WT and cytc mutants depend on the photoperiod likely due to energy and stress signaling constraints. Parallel responses observed between in vivo respiratory activities, TCA cycle intermediates, amino acids, and stress signaling metabolites indicate the coordination of different pathways of primary metabolism to support growth adaptation under different photoperiods.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 222
Author(s):  
Nguyen-Trong Nguyen ◽  
Eun-Hui Bae ◽  
Luu-Ngoc Do ◽  
Tien-Anh Nguyen ◽  
Ilwoo Park ◽  
...  

Alport Syndrome (AS) is a genetic disorder characterized by impaired kidney function. The development of a noninvasive tool for early diagnosis and monitoring of renal function during disease progression is of clinical importance. Hyperpolarized 13C MRI is an emerging technique that enables non-invasive, real-time measurement of in vivo metabolism. This study aimed to investigate the feasibility of using this technique for assessing changes in renal metabolism in the mouse model of AS. Mice with AS demonstrated a significant reduction in the level of lactate from 4- to 7-week-old, while the levels of lactate were unchanged in the control mice over time. This reduction in lactate production in the AS group accompanied a significant increase of PEPCK expression levels, indicating that the disease progression in AS triggered the gluconeogenic pathway and might have resulted in a decreased lactate pool size and a subsequent reduction in pyruvate-to-lactate conversion. Additional metabolic imaging parameters, including the level of lactate and pyruvate, were found to be different between the AS and control groups. These preliminary results suggest that hyperpolarized 13C MRI might provide a potential noninvasive tool for the characterization of disease progression in AS.


Sign in / Sign up

Export Citation Format

Share Document