Involvement of the p66Shc protein in glucose transport regulation in skeletal muscle myoblasts

2009 ◽  
Vol 296 (2) ◽  
pp. E228-E237 ◽  
Author(s):  
Annalisa Natalicchio ◽  
Francesca De Stefano ◽  
Sebastio Perrini ◽  
Luigi Laviola ◽  
Angelo Cignarelli ◽  
...  

The p66Shc protein isoform regulates MAP kinase activity and the actin cytoskeleton turnover, which are both required for normal glucose transport responses. To investigate the role of p66Shc in glucose transport regulation in skeletal muscle cells, L6 myoblasts with antisense-mediated reduction (L6/p66Shc as) or adenovirus-mediated overexpression (L6/p66Shc adv) of the p66Shc protein were examined. L6/Shc as myoblasts showed constitutive activation of ERK-1/2 and disruption of the actin network, associated with an 11-fold increase in basal glucose transport. GLUT1 and GLUT3 transporter proteins were sevenfold and fourfold more abundant, respectively, and were localized throughout the cytoplasm. Conversely, in L6 myoblasts overexpressing p66Shc, basal glucose uptake rates were reduced by 30% in parallel with a ∼50% reduction in total GLUT1 and GLUT3 transporter levels. Inhibition of the increased ERK-1/2 activity with PD98059 in L6/Shc as cells had a minimal effect on increased GLUT1 and GLUT3 protein levels, but restored the actin cytoskeleton, and reduced the abnormally high basal glucose uptake by 70%. In conclusion, p66Shc appears to regulate the glucose transport system in skeletal muscle myoblasts by controlling, via MAP kinase, the integrity of the actin cytoskeleton and by modulating cellular expression of GLUT1 and GLUT3 transporter proteins via ERK-independent pathways.

2021 ◽  
Vol 22 (13) ◽  
pp. 7228
Author(s):  
Ching-Chia Wang ◽  
Huang-Jen Chen ◽  
Ding-Cheng Chan ◽  
Chen-Yuan Chiu ◽  
Shing-Hwa Liu ◽  
...  

Urinary acrolein adduct levels have been reported to be increased in both habitual smokers and type-2 diabetic patients. The impairment of glucose transport in skeletal muscles is a major factor responsible for glucose uptake reduction in type-2 diabetic patients. The effect of acrolein on glucose metabolism in skeletal muscle remains unclear. Here, we investigated whether acrolein affects muscular glucose metabolism in vitro and glucose tolerance in vivo. Exposure of mice to acrolein (2.5 and 5 mg/kg/day) for 4 weeks substantially increased fasting blood glucose and impaired glucose tolerance. The glucose transporter-4 (GLUT4) protein expression was significantly decreased in soleus muscles of acrolein-treated mice. The glucose uptake was significantly decreased in differentiated C2C12 myotubes treated with a non-cytotoxic dose of acrolein (1 μM) for 24 and 72 h. Acrolein (0.5–2 μM) also significantly decreased the GLUT4 expression in myotubes. Acrolein suppressed the phosphorylation of glucose metabolic signals IRS1, Akt, mTOR, p70S6K, and GSK3α/β. Over-expression of constitutive activation of Akt reversed the inhibitory effects of acrolein on GLUT4 protein expression and glucose uptake in myotubes. These results suggest that acrolein at doses relevant to human exposure dysregulates glucose metabolism in skeletal muscle cells and impairs glucose tolerance in mice.


2008 ◽  
Vol 294 (1) ◽  
pp. E97-E102 ◽  
Author(s):  
Audrey E. Brown ◽  
Matthias Elstner ◽  
Stephen J. Yeaman ◽  
Douglass M. Turnbull ◽  
Mark Walker

Insulin-resistant type 2 diabetic patients have been reported to have impaired skeletal muscle mitochondrial respiratory function. A key question is whether decreased mitochondrial respiration contributes directly to the decreased insulin action. To address this, a model of impaired cellular respiratory function was established by incubating human skeletal muscle cell cultures with the mitochondrial inhibitor sodium azide and examining the effects on insulin action. Incubation of human skeletal muscle cells with 50 and 75 μM azide resulted in 48 ± 3% and 56 ± 1% decreases, respectively, in respiration compared with untreated cells mimicking the level of impairment seen in type 2 diabetes. Under conditions of decreased respiratory chain function, insulin-independent (basal) glucose uptake was significantly increased. Basal glucose uptake was 325 ± 39 pmol/min/mg (mean ± SE) in untreated cells. This increased to 669 ± 69 and 823 ± 83 pmol/min/mg in cells treated with 50 and 75 μM azide, respectively (vs. untreated, both P < 0.0001). Azide treatment was also accompanied by an increase in basal glycogen synthesis and phosphorylation of AMP-activated protein kinase. However, there was no decrease in glucose uptake following insulin exposure, and insulin-stimulated phosphorylation of Akt was normal under these conditions. GLUT1 mRNA expression remained unchanged, whereas GLUT4 mRNA expression increased following azide treatment. In conclusion, under conditions of impaired mitochondrial respiration there was no evidence of impaired insulin signaling or glucose uptake following insulin exposure in this model system.


1986 ◽  
Vol 240 (2) ◽  
pp. 395-401 ◽  
Author(s):  
R A Challiss ◽  
D J Hayes ◽  
G K Radda

Muscle bloodflow and the rate of glucose uptake and phosphorylation were measured in vivo in rats 7 days after unilateral femoral artery ligation and section. Bloodflow was determined by using radiolabelled microspheres. At rest, bloodflow to the gastrocnemius, plantaris and soleus muscles of the ligated limb was similar to their respective mean contralateral control values; however, bilateral sciatic nerve stimulation at 1 Hz caused a less pronounced hyperaemic response in the muscles of the ligated limb, being 59, 63 and 49% of their mean control values in the gastrocnemius, plantaris and soleus muscles respectively. The rate of glucose utilization was determined by using the 2-deoxy[3H]glucose method [Ferré, Leturque, Burnol, Penicaud & Girard (1985) Biochem. J. 228, 103-110]. At rest, the rate of glucose uptake and phosphorylation was statistically significantly increased in the gastrocnemius and soleus muscles of the ligated limb, being 126 and 140% of the mean control values respectively. Bilateral sciatic nerve stimulation at 1 Hz caused a 3-5-fold increase in the rate of glucose utilization by the ligated and contralateral control limbs; furthermore, the rate of glucose utilization was significantly increased in the muscles of the ligated limb, being 140, 129 and 207% of their mean control values respectively. For the range of bloodflow to normally perfused skeletal muscle at rest or during isometric contraction determined in the present study, a linear correlation between the rate of glucose utilization and bloodflow can be demonstrated. Applying similar methods of regression analysis to glucose utilization and bloodflow to muscles of the ligated limb reveals a similar linear correlation. However, the rate of glucose utilization at a given bloodflow is increased in muscles of the ligated limb, indicating an adaptation of skeletal muscle to hypoperfusion.


2009 ◽  
Vol 587 (13) ◽  
pp. 3363-3373 ◽  
Author(s):  
Melissa A. Chambers ◽  
Jennifer S. Moylan ◽  
Jeffrey D. Smith ◽  
Laurie J. Goodyear ◽  
Michael B. Reid

2012 ◽  
Vol 303 (7) ◽  
pp. E908-E916 ◽  
Author(s):  
Jiarong Liu ◽  
Wei Zhang ◽  
Gin C. Chuang ◽  
Helliner S. Hill ◽  
Ling Tian ◽  
...  

We have suggested previously that Tribbles homolog 3 (TRIB3), a negative regulator of Akt activity in insulin-sensitive tissues, could mediate glucose-induced insulin resistance in muscle under conditions of chronic hyperglycemia (Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, Walton RG, Martin M, Garvey WT. Am J Physiol Endocrinol Metab 298: E565–E576, 2010). In the current study, we have assessed short-term physiological regulation of TRIB3 in skeletal muscle and adipose tissues by nutrient excess and fasting as well as TRIB3's ability to modulate glucose transport and mitochondrial oxidation. In Sprague-Dawley rats, we found that short-term fasting enhanced insulin sensitivity concomitantly with decrements in TRIB3 mRNA (66%, P < 0.05) and protein (81%, P < 0.05) in muscle and increments in TRIB3 mRNA (96%, P < 0.05) and protein (∼10-fold, P < 0.05) in adipose tissue compared with nonfasted controls. On the other hand, rats fed a Western diet for 7 days became insulin resistant concomitantly with increments in TRIB3 mRNA (155%, P < 0.05) and protein (69%, P = 0.0567) in muscle and a decrease in the mRNA (76%, P < 0.05) and protein (70%, P < 0.05) in adipose. In glucose transport and mitochondria oxidation studies using skeletal muscle cells, we found that stable TRIB3 overexpression impaired insulin-stimulated glucose uptake without affecting basal glucose transport and increased both basal glucose oxidation and the maximal uncoupled oxygen consumption rate. With stable knockdown of TRIB3, basal and insulin-stimulated glucose transport rates were increased, whereas basal glucose oxidation and the maximal uncoupled oxygen consumption rate were decreased. In conclusion, TRIB3 impacts glucose uptake and oxidation oppositely in muscle and fat according to levels of nutrient availability. The above data for the first time implicate TRIB3 as a potent physiological regulator of insulin sensitivity and mitochondrial glucose oxidation under conditions of nutrient deprivation and excess.


1997 ◽  
Vol 273 (3) ◽  
pp. C1082-C1087 ◽  
Author(s):  
A. D. Lee ◽  
P. A. Hansen ◽  
J. Schluter ◽  
E. A. Gulve ◽  
J. Gao ◽  
...  

beta-Adrenergic stimulation has been reported to inhibit insulin-stimulated glucose transport in adipocytes. This effect has been attributed to a decrease in the intrinsic activity of the GLUT-4 isoform of the glucose transporter that is mediated by phosphorylation of GLUT-4. Early studies showed no inhibition of insulin-stimulated glucose transport by epinephrine in skeletal muscle. The purpose of this study was to determine the effect of epinephrine on GLUT-4 phosphorylation, and reevaluate the effect of beta-adrenergic stimulation on insulin-activated glucose transport, in skeletal muscle. We found that 1 microM epinephrine, which raised adenosine 3',5'-cyclic monophosphate approximately ninefold, resulted in GLUT-4 phosphorylation in rat skeletal muscle but had no inhibitory effect on insulin-stimulated 3-O-methyl-D-glucose (3-MG) transport. In contrast to 3-MG transport, the uptakes of 2-deoxyglucose and glucose were markedly inhibited by epinephrine treatment. This inhibitory effect was presumably mediated by stimulation of glycogenolysis, which resulted in an increase in glucose 6-phosphate concentration to levels known to severely inhibit hexokinase. We conclude that 1) beta-adrenergic stimulation decreases glucose uptake by raising glucose 6-phosphate concentration, thus inhibiting hexokinase, but does not inhibit insulin-stimulated glucose transport and 2) phosphorylation of GLUT-4 has no effect on glucose transport in skeletal muscle.


1995 ◽  
Vol 269 (6) ◽  
pp. E1052-E1058 ◽  
Author(s):  
R. Potashnik ◽  
N. Kozlovsky ◽  
S. Ben-Ezra ◽  
A. Rudich ◽  
N. Bashan

Possible association between the degree of iron load and glucose metabolism has been postulated by both in vivo and in vitro studies. Because skeletal muscle plays a major role in whole body glucose utilization, we evaluated the effect of iron chelators deferoxamine (DFO) and bipyridyl (Bip) on glucose metabolism and transport in cultured L6 muscle cells. Bip (0.1 mM) or DFO (0.5 mM) added for 24 h to the culture medium increased glucose consumption, lactate production, and [14C]glucose incorporation into glycogen by approximately twofold. 2-Deoxy-glucose uptake by L6 myotubes increased time dependently, reaching a 5-fold and 2.5-fold increase after 12 h for Bip and DFO, respectively. Insulin induced a 2.5-fold increase in glucose uptake in untreated cells, which was additive to the chelator's effect. Iron chelator-induced glucose transport stimulation was inhibited by cycloheximide (2.5 micrograms/ml), indicating dependence on de novo protein synthesis. Increases in GLUT-1 protein and mRNA concentration, without changes in GLUT-4, were found to be responsible for iron chelator effects. We conclude that L6 cells adapt to reduction in iron availability by increasing glucose utilization through an enhanced expression of GLUT-1, without losing their physiological response to insulin.


1997 ◽  
Vol 273 (6) ◽  
pp. E1107-E1112 ◽  
Author(s):  
G. F. Merrill ◽  
E. J. Kurth ◽  
D. G. Hardie ◽  
W. W. Winder

5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) has previously been reported to be taken up into cells and phosphorylated to form ZMP, an analog of 5′-AMP. This study was designed to determine whether AICAR can activate AMP-activated protein kinase (AMPK) in skeletal muscle with consequent phosphorylation of acetyl-CoA carboxylase (ACC), decrease in malonyl-CoA, and increase in fatty acid oxidation. Rat hindlimbs were perfused with Krebs-Henseleit bicarbonate containing 4% bovine serum albumin, washed bovine red blood cells, 200 μU/ml insulin, and 10 mM glucose with or without AICAR (0.5–2.0 mM). Perfusion with medium containing AICAR was found to activate AMPK in skeletal muscle, inactivate ACC, and decrease malonyl-CoA. Hindlimbs perfused with 2 mM AICAR for 45 min exhibited a 2.8-fold increase in fatty acid oxidation and a significant increase in glucose uptake. No difference was observed in oxygen uptake in AICAR vs. control hindlimb. These results provide evidence that decreases in muscle content of malonyl-CoA can increase the rate of fatty acid oxidation.


1988 ◽  
Vol 252 (3) ◽  
pp. 733-737 ◽  
Author(s):  
E A Richter ◽  
B F Hansen ◽  
S A Hansen

The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing, impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change in muscle glucose transport as measured by uptake of 3-O-[14C]-methylglucose. Simultaneously, muscle glycogen stores increased to 2-3.5 times initial values, depending on fibre type. Perfusion for 5 h in the presence of glucose but in the absence of insulin decreased subsequent insulin action on glucose uptake by 80% of the effect of glucose with insulin, but without an increase in muscle glycogen concentration. Perfusion for 5 h with insulin but without glucose, and with subsequent addition of glucose back to the perfusate, revealed glucose uptake and transport similar to initial values obtained in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.


2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.


Sign in / Sign up

Export Citation Format

Share Document