Enhancement of antral contractions and vagal afferent signaling with synchronized electrical stimulation

2003 ◽  
Vol 285 (3) ◽  
pp. G577-G585 ◽  
Author(s):  
Shachar Peles ◽  
Jaime Petersen ◽  
Ricardo Aviv ◽  
Shai Policker ◽  
Ossama Abu-Hatoum ◽  
...  

Gastric filling activates vagal afferents involved in peripheral signaling to the central nervous system (CNS) for food intake. It is not known whether these afferents linearly encode increasing contractions of the antrum during antral distension (AD). The aim of this study was to investigate effects of AD and electrically enhanced antral contractions on responses of vagal afferents innervating the antrum. Single-fiber recordings were made from the vagal afferents in anesthetized male Long-Evans rats. Antral contractions were measured with a solid-state probe placed in the antrum. A nonexcitatory electrical stimulation (NES) inducing no smooth muscle contractions was applied during the ascending phase of antral contractions to enhance subsequent antral contractions. Fifty-six fibers identified during AD (1 ml for 30 s) were studied through different types of mechanical stimuli. Under normal conditions, one group of fibers exhibited rhythmic firing in phase with antral contractions. Another group of fibers had nonrhythmic spontaneous firing. Responses of 15 fibers were tested with NES during multiple-step distension (MSD). NES produced a mean increase in antral contraction amplitude (177.1 ± 35.3%) and vagal afferent firing (21.6 ± 2.6%). Results show that both passive distension and enhanced antral contractions activate distension-sensitive vagal afferents. Responses of these fibers increase linearly to enhanced antral contraction induced by NES or MSD up to a distending volume of 0.6 ml. However, responses reached a plateau at a distending volume >0.8 ml. We concluded that enhanced contraction of the antrum can activate vagal afferents signaling to the CNS.

1993 ◽  
Vol 70 (5) ◽  
pp. 1950-1961 ◽  
Author(s):  
A. R. Evans ◽  
R. W. Blair

1. Various intensities, frequencies, and pulse widths of electrical stimulation of vagal afferent fibers were used to assess the responses of 87 medullary raphe neurons to vagal afferent fiber input in pentobarbital sodium-anesthetized, barodenervated paralyzed cats. Thirty-seven neurons were antidromically activated from the T2-T3 segments of the thoracic spinal cord, and 40 neurons could not be antidromically activated. Neurons were located in the nucleus raphe magnus (79%) and the nucleus raphe obscurus (15%). The remaining 6% of the neurons were not found; however, their locations were comparable in depth and position on the midline with other neurons in the same animals whose locations were identified. 2. The responses of 60 neurons to electrical stimulation of vagal afferent fibers were classified as excitatory (38%), inhibitory (24%), or mixed, (7%). The mixed responses were characterized by excitation at one frequency or intensity and inhibition at another frequency or intensity. The remaining 27 neurons did not clearly respond. 3. The excitatory responses to electrical stimulation of the cervical vagus nerve were intensity and frequency dependent. Inhibitory responses were frequency dependent at lower frequencies of stimulation and both frequency and intensity dependent at higher frequencies. The mixed responses were frequency dependent. Overall, longer pulse widths produced significantly greater responses than shorter pulse widths. 4. Thirty-three neurons were tested for responses to chemical stimulation of vagal afferents with intra-atrial injections of three doses of veratridine. Twenty-one percent were excited, 55% were inhibited, and 6% had mixed responses. For the mixed responses, excitation occurred at one dose and inhibition at another. The remaining 18% of the neurons were unresponsive to veratridine. The excitatory responses were dose dependent, but the inhibitory responses were not. Three doses of phenybiguanide (PBG) were also used to chemically activate vagal afferents in 27 neurons. Eleven percent were excited, 44% were inhibited, and 4% had mixed responses. The remaining 41% were unresponsive to PBG. The excitatory and inhibitory responses were dose dependent. 5. When comparing responses in projection and nonprojection neurons, inhibition was seen significantly more often in projection neurons and excitation in nonprojection neurons. Sixty-three percent of the neurons inhibited by electrical stimulation were raphespinal neurons, and 78% of the neurons excited by vagal stimulation were nonprojection neurons. Similar observations were made with the responses to chemical activation of the vagus. 6. Neurons with lower spontaneous discharge rates were more often excited by vagal stimulation and neurons with higher rates were more often inhibited.(ABSTRACT TRUNCATED AT 400 WORDS)


2011 ◽  
Vol 300 (3) ◽  
pp. R554-R565 ◽  
Author(s):  
Wolfgang Langhans ◽  
Claudia Leitner ◽  
Myrtha Arnold

Various mechanisms detect the presence of dietary triacylglycerols (TAG) in the digestive tract and link TAG ingestion to the regulation of energy homeostasis. We here propose a novel sensing mechanism with the potential to encode dietary TAG-derived energy by translating enterocyte fatty acid oxidation (FAO) into vagal afferent signals controlling eating. Peripheral FAO has long been implicated in the control of eating ( 141 ). The prevailing view was that mercaptoacetate (MA) and other FAO inhibitors stimulate eating by modulating vagal afferent signaling from the liver. This concept has been challenged because hepatic parenchymal vagal afferent innervation is scarce and because experimentally induced changes in hepatic FAO often fail to affect eating. Nevertheless, intraperitoneally administered MA acts in the abdomen to stimulate eating because this effect was blocked by subdiaphragmatic vagal deafferentation ( 21 ), a surgical technique that eliminates all vagal afferents from the upper gut. These and other data support a role of the small intestine rather than the liver as a FAO sensor that can influence eating. After intrajejunal infusions, MA also stimulated eating in rats through vagal afferent signaling, and after infusion into the superior mesenteric artery, MA increased the activity of celiac vagal afferent fibers originating in the proximal small intestine. Also, pharmacological interference with TAG synthesis targeting the small intestine induced a metabolic profile indicative of increased FAO and inhibited eating in rats on a high-fat diet but not on chow. Finally, cell culture studies indicate that enterocytes oxidize fatty acids, which can be modified pharmacologically. Thus enterocytes may sense dietary TAG-derived fatty acids via FAO and influence eating through changes in intestinal vagal afferent activity. Further studies are necessary to identify the link between enterocyte FAO and vagal afferents and to examine the specificity and potential physiological relevance of such a mechanism.


1990 ◽  
Vol 64 (4) ◽  
pp. 1098-1114 ◽  
Author(s):  
K. Ren ◽  
A. Randich ◽  
G. F. Gebhart

1. Supraspinal relays for vagal afferent modulation of responses of spinal dorsal horn neurons to 50 degrees C heating of the skin were examined by the use of nonselective, reversible local anesthesia or soma-selective, irreversible neurotoxic damage of neural tissue. Eighty-five neurons were isolated in the lumbar spinal dorsal horn of 80 pentobarbital-anesthetized, paralyzed rats. All neurons studied had receptive fields on the glabrous skin of the plantar surface of the ipsilateral hind paw and responded to mechanical stimuli of both low and high intensity as well as noxious thermal stimulation. 2. Intensity-dependent modulation by vagal afferent stimulation (VAS) of neuronal responses to heating of the skin was established. Responses of 40 units were facilitated by low and inhibited by greater intensities of VAS. Another 36 units were only inhibited by VAS, and four were only facilitated. 3. Local anesthesia of the dorsolateral pons by bilateral microinjections of lidocaine (4%, 0.5 microliter) were made to examine the contribution of this area to VAS-produced spinal modulation. The microinjection of lidocaine bilaterally into the ventral locus coeruleus/subcoeruleus (LC/SC) reversibly and significantly attenuated VAS-produced inhibition of unit responses to heat from 63 to 89% of control and abolished VAS-produced facilitation. The microinjection of lidocaine bilaterally into the dorsal LC had no significant effect on VAS-produced modulation of spinal dorsal horn neurons. 4. Ibotenic acid (10 micrograms, 0.5 microliter) was microinjected into the dorsolateral pons to determine the relative contributions of cell bodies in this area to VAS-produced spinal modulation. Unilateral microinjection of ibotenic acid into the LC/SC ipsilateral to the vagus nerve stimulated had no significant effect on VAS-produced inhibition but significantly attenuated VAS-produced facilitation of unit responses to heat. Bilateral microinjections of ibotenic acid significantly attenuated VAS-produced inhibition of unit responses to heat from 48 to 94% of control. 5. Local anesthesia of the medial rostroventral medulla (RVM), primarily the nucleus raphe magnus (NRM), significantly attenuated VAS-produced inhibition of unit responses to heat from 55 to 87% of control but had no significant effect on VAS-produced facilitation. Microinjection of ibotenic acid into the RVM also significantly reduced VAS-produced inhibition of unit responses to heat. No significant change in VAS-produced spinal modulation was found after lidocaine microinjection into areas dorsal to the NRM, the nucleus raphe pallidus, or the olivary nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Author(s):  
Jiayue Cao ◽  
Xiaokai Wang ◽  
Terry L Powley ◽  
Zhongming Liu

Gastric electrical stimulation (GES) is a bioelectric intervention for gastroparesis, obesity, and other functional gastrointestinal disorders. In a potential mechanism of action, GES activates the nerve endings of vagal afferent neurons and induces the vago-vagal reflex through the nucleus tractus solitarius (NTS) in the brainstem. However, it is unclear where and how to stimulate in order to optimize the vagal afferent responses. To address this question with electrophysiology in rats, we applied mild electrical currents to two serosal targets on the distal forestomach with dense distributions of vagal intramuscular arrays that innervated the circular and longitudinal smooth muscle layers. During stimulation, we recorded single and multi-unit responses in NTS and evaluated how the recorded responses depended on the stimulus orientation and amplitude. We found that NTS responses were highly selective to the stimulus orientation for a range of stimulus amplitudes. The strongest responses were observed when the applied current flowed in the same direction as the intramuscular arrays in parallel with the underlying smooth muscle fibers. Our results suggest that gastric neurons in NTS may encode the orientation-specific activity of gastric smooth muscles relayed by vagal afferent neurons. This finding suggests that the orientation of GES is critical to effective engagement of vagal afferents and should be considered in light of the structural phenotypes of vagal terminals in the stomach.


2013 ◽  
Vol 305 (11) ◽  
pp. R1307-R1322 ◽  
Author(s):  
Edward A. Fox ◽  
Jessica E. Biddinger ◽  
Zachary C. Baquet ◽  
Kevin R. Jones ◽  
Jennifer McAdams

A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout ( SM-NT-3 KO) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3 KO mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3 KO mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3 KO mice compared with controls. The increases in meal duration and first meal size of SM-NT-3 KO mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation.


2007 ◽  
Vol 292 (5) ◽  
pp. G1213-G1220 ◽  
Author(s):  
C. Y. Liu ◽  
M. H. Mueller ◽  
D. Grundy ◽  
M. E. Kreis

The central nervous system modulates inflammation in the gastrointestinal tract via efferent vagal pathways. We hypothesized that these vagal efferents receive synaptic input from vagal afferents, representing an autonomic feedback mechanism. The consequence of this vagovagal reflex for afferent signal generation in response to LPS was examined in the present study. Different modifications of the vagal innervation or sham procedures were performed in anesthetized rats. Extracellular mesenteric afferent nerve discharge and systemic blood pressure were recorded in vivo before and after systemic administration of LPS (6 mg/kg iv). Mesenteric afferent nerve discharge increased dramatically following LPS, which was unchanged when vagal efferent traffic was eliminated by acute vagotomy. In chronically vagotomized animals, to eliminate both vagal afferent and efferent traffic, the increase in afferent firing 3.5 min after LPS was reduced to 3.2 ± 2.5 impulses/s above baseline compared with 42.2 ± 2.0 impulses/s in controls ( P < 0.001). A similar effect was observed following perivagal capsaicin, which was used to eliminate vagal afferent traffic only. LPS also caused a transient hypotension (<10 min), a partial recovery, and then persistent hypertension that was exacerbated by all three procedures. Mechanosensitivity was increased 15 min following LPS but had recovered at 30 min in all subgroups except for the chronic vagotomy group. In conclusion, discharge in capsaicin-sensitive mesenteric vagal afferents is augmented following systemic LPS. This activity, through a vagovagal pathway, helps to attenuate the effects of septic shock. The persistent hypersensitivity to mechanical stimulation after chronic vagal denervation suggests that the vagus exerts a regulatory influence on spinal afferent sensitization following LPS.


Cephalalgia ◽  
2017 ◽  
Vol 37 (13) ◽  
pp. 1285-1293 ◽  
Author(s):  
Romain Nonis ◽  
Kevin D’Ostilio ◽  
Jean Schoenen ◽  
Delphine Magis

Background Benefits of cervical non-invasive vagus nerve stimulation (nVNS) devices have been shown in episodic cluster headache and preliminarily suggested in migraine, but direct evidence of vagus nerve activation using such devices is lacking. Vagal somatosensory evoked potentials (vSEPs) associated with vagal afferent activation have been reported for invasive vagus nerve stimulation (iVNS) and non-invasive auricular vagal stimulation. Here, we aimed to show and characterise vSEPs for cervical nVNS. Methods vSEPs were recorded for 12 healthy volunteers who received nVNS over the cervical vagus nerve, bipolar electrode/DS7A stimulation over the inner tragus, and nVNS over the sternocleidomastoid (SCM) muscle. We measured peak-to-peak amplitudes (P1-N1), wave latencies, and N1 area under the curve. Results P1-N1 vSEPs were observed for cervical nVNS (11/12) and auricular stimulation (9/12), with latencies similar to those described previously, whereas SCM stimulation revealed only a muscle artefact with a much longer latency. A dose-response analysis showed that cervical nVNS elicited a clear vSEP response in more than 80% of the participants using an intensity of 15 V. Conclusion Cervical nVNS can activate vagal afferent fibres, as evidenced by the recording of far-field vSEPs similar to those seen with iVNS and non-invasive auricular stimulation.


2007 ◽  
Vol 293 (2) ◽  
pp. G493-G500 ◽  
Author(s):  
Eddy Viard ◽  
Zhongling Zheng ◽  
Shuxia Wan ◽  
R. Alberto Travagli

Cholecystokinin (CCK) has been proposed to act in a vagally dependent manner to increase pancreatic exocrine secretion via actions exclusively at peripheral vagal afferent fibers. Recent evidence, however, suggests the CCK-8s may also affect brain stem structures directly. We used an in vivo preparation with the aims of 1) investigating whether the actions of intraduodenal casein perfusion to increase pancreatic protein secretion also involved direct actions of CCK at the level of the brain stem and, if so, 2) determining whether, in the absence of vagal afferent inputs, CCK-8s applied to the dorsal vagal complex (DVC) can also modulate pancreatic exocrine secretion (PES). Sprague-Dawley rats (250–400 g) were anesthetized and the common bile-pancreatic duct was cannulated to collect PES. Both vagal deafferentation and pretreatment with the CCK-A antagonist lorglumide on the floor of the fourth ventricle decreased the casein-induced increase in PES output. CCK-8s microinjection (450 pmol) in the DVC significantly increased PES; the increase was larger when CCK-8s was injected in the left side of the DVC. Protein secretion returned to baseline levels within 30 min. Microinjection of CCK-8s increased PES (although to a lower extent) also in rats that underwent complete vagal deafferentation. These data indicate that, as well as activating peripheral vagal afferents, CCK-8s increases pancreatic exocrine secretion via an action in the DVC. Our data suggest that the CCK-8s-induced increases in PES are due mainly to a paracrine effect of CCK; however, a relevant portion of the effects of CCK is due also to an effect of the peptide on brain stem vagal circuits.


2005 ◽  
Vol 289 (3) ◽  
pp. R695-R703 ◽  
Author(s):  
E. H. E. M. van de Wall ◽  
P. Duffy ◽  
R. C. Ritter

Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhances behavioral and electrophysiological responses to gastric distension in rats and people, we hypothesized that CCK might enhance the vagal afferent response to gastric distension via an action on capsaicin-insensitive vagal afferents. To test this hypothesis, we quantified expression of Fos-like immunoreactivity (Fos) in the dorsal vagal complex (DVC) of capsaicin-treated (Cap) and control rats (Veh), following gastric balloon distension alone and in combination with CCK injection. In Veh rats, intraperitoneal CCK significantly increased DVC Fos, especially in nucleus of the solitary tract (NTS), whereas in Cap rats, CCK did not significantly increase DVC Fos. In contrast to CCK, gastric distension did significantly increase Fos expression in the NTS of both Veh and Cap rats, although distension-induced Fos was attenuated in Cap rats. When CCK was administered during gastric distension, it significantly enhanced NTS Fos expression in response to distension in Cap rats. Furthermore, CCK's enhancement of distension-induced Fos in Cap rats was reversed by the selective CCK-A receptor antagonist lorglumide. We conclude that CCK directly activates capsaicin-sensitive C-type vagal afferents. However, in capsaicin-resistant A-type afferents, CCK's principal action may be facilitation of responses to gastric distension.


2000 ◽  
Vol 78 (9) ◽  
pp. 708-713
Author(s):  
Chantal Savoie ◽  
Chi-Chung Chan ◽  
Ian W Rodger ◽  
Annette Robichaud

The usefulness of selective inhibitors of type 4 phosphodiesterase (PDE4) in the treatment of inflammation and pulmonary diseases is limited by their side effects: nausea and vomiting. We studied the effect of three structurally diverse PDE4 inhibitors on the vagal nerve afferent and efferent fibers in anesthetized rats. The effects of RS14203, (R)-rolipram, and CT-2450 were evaluated on the von Bezold-Jarisch reflex (vagal afferent fibers) and in a model of vagal electrical stimulation (vagal efferent fibers). All three PDE4 inhibitors were administered at 1, 10, or 100 µg/kg (iv) 15 min prior to the induction of bradycardia by an iv injection of 2-methyl-5-HT (von Bezold-Jarisch reflex) or by vagal electrical stimulation. At 100 µg/kg, RS14203 significantly potentiated the 2-methyl-5-HT response. No statistically significant effects were observed with (R)-rolipram or CT-2450 at the doses studied. RS14203, (R)-rolipram, or CT-2450 (1-100 µg/kg iv) did not affect the bradycardia induced by vagal electrical stimulation. Consequently, our results show that RS14203 selectively facilitates serotoninergic neurotransmission in vagal afferent fibers. The emetic action of RS14203 may be mediated by this mechanism.Key words: PDE4 inhibitors, von Bezold-Jarisch reflex, emesis, vagal afferent and efferent fibres, bradycardia.


Sign in / Sign up

Export Citation Format

Share Document