Maternal Obesogenic Diet Regulates Offspring Bile Acid Homeostasis and Hepatic Lipid Metabolism via the Gut Microbiome in Mice

Author(s):  
Michael D. Thompson ◽  
Jisue Kang ◽  
Austin Faerber ◽  
Holly Hinrichs ◽  
Oguz Ozler ◽  
...  

Mice exposed in gestation to maternal high fat/high sucrose (HF/HS) diet develop altered bile acid (BA) homeostasis. We hypothesized that these reflect an altered microbiome and asked if microbiota transplanted from HF/HS offspring change hepatic BA and lipid metabolism to determine the directionality of effect. Female mice were fed HF/HS or chow (CON) for 6 weeks and bred with lean males. 16S sequencing was performed to compare taxa in offspring. Cecal microbiome transplantation (CMT) was performed from HF/HS or CON offspring into antibiotic treated mice fed chow or high fructose. BA, lipid metabolic, and gene expression analyses performed in recipient mice. Gut microbiomes from HF/HS offspring segregated from CON offspring, with increased Firmicutes to Bacteriodetes ratios and Verrucomicrobial abundance. Following CMT, HF/HS recipient mice had larger BA pools, and increased intrahepatic muricholic acid and decreased deoxycholic acid species. HF/HS recipient mice exhibited downregulated hepatic Mrp2, increased hepatic Oatp1b2, and decreased ileal Asbt mRNA expression. HF/HS recipient mice exhibited decreased cecal butyrate and increased hepatic expression of Il6. HF/HS recipient mice had larger livers, and increased intrahepatic triglyceride versus CON recipient mice after fructose feeding, with increased hepatic mRNA expression of lipogenic genes including Srebf1, Fabp1, Mogat1, and Mogat2. CMT from HF/HS offspring increased BA pool and shifted the composition of the intrahepatic BA pool. CMT from HF/HS donor offspring increased fructose-induced liver triglyceride accumulation. These findings support a causal role for vertical transfer of an altered microbiome in hepatic BA and lipid metabolism in HF/HS offspring.

2019 ◽  
Vol 20 (17) ◽  
pp. 4281 ◽  
Author(s):  
Kazunari Nohara ◽  
Travis Nemkov ◽  
Angelo D’Alessandro ◽  
Seung-Hee Yoo ◽  
Zheng Chen

Cholesterol and bile acid (BA) homeostasis plays a central role in systemic metabolism. Accumulating evidence suggests a key regulatory function of the circadian clock, our biological timer, in lipid metabolism, particularly cholesterol and bile acid flux. Previously, we showed that Nobiletin (NOB), a natural compound targeting the ROR (Retinoic acid receptor-related orphan receptor) nuclear receptors in the circadian oscillator, strongly protects lipid homeostasis, including normal serum cholesterol levels in high-fat (HF) fed mice at both young and old ages. In this study, we further examined the role of NOB in cholesterol metabolism in HF-fed aged mice, and found that NOB lowered the serum LDL/VLDL cholesterol levels and consequently the LDL/HDL ratio. BA levels in the serum were markedly reduced in the HF.NOB group, and examination of additional hepatic markers further indicate a protective role of NOB in the liver. At the molecular level, whereas HF feeding downregulated hepatic expression of several ROR target genes involved in bile acid synthesis, NOB treatment (HF.NOB) was able to rescue it. In accordance, fecal BA excretion was enhanced by NOB, and microbial 16S sequencing revealed alteration of several taxa known to be involved in secondary BA production in the gut. Together, these results demonstrate concerted effects of the clock-modulating compound NOB in cholesterol and BA metabolism, suggesting pharmacological manipulation of the clock as a novel therapeutic strategy against metabolic disorders and age-related decline.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2135
Author(s):  
Qing Guo ◽  
Yi Tang ◽  
Ying Li ◽  
Ziyuan Xu ◽  
Di Zhang ◽  
...  

A perinatal high-salt (HS) diet was reported to elevate plasma triglycerides. This study aimed to investigate the hypothesis that a perinatal HS diet predisposed offspring to non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of abnormal lipid metabolism, and the possible mechanism. Female C57BL/6 mice were fed a control diet (0.5% NaCl) or HS diet (4% NaCl) during pregnancy and lactation and their offspring were sacrificed at weaning. The perinatal HS diet induced greater variation in fecal microbial beta-diversity (β-diversity) and increased bacteria abundance of Proteobacteria and Bacteroides. The gut microbiota dysbiosis promoted bile acid homeostasis disbalance, characterized by the accumulation of lithocholic acid (LCA) and deoxycholic acid (DCA) in feces. These alterations disturbed gut barrier by increasing the expression of tight junction protein (Tjp) and occludin (Ocln), and increased systemic lipopolysaccharide (LPS) levels and hepatic inflammatory cytokine secretion (TNF-α and IL-6) in the liver. The perinatal HS diet also inhibited hepatic expression of hepatic FXR signaling (CYP7A1 and FXR), thus triggering increased hepatic expression of pro-inflammatory cytokines (TNF-α and IL-6) and hepatic lipid metabolism-associated genes (SREBP-1c, FAS, ACC), leading to unique characteristics of NAFLD. In conclusion, a perinatal HS diet induced NAFLD in weanling mice offspring; the possible mechanism was related to increased bacteria abundance of Proteobacteria and Bacteroides, increased levels of LCA and DCA in feces, and increased expressions of hepatic FXR signaling.


2020 ◽  
Vol 246 (2) ◽  
pp. 109-122 ◽  
Author(s):  
Chaoyi Zhang ◽  
Qianli Zhang ◽  
Zhihong Huang ◽  
Quan Jiang

Adropin plays a role in the maintenance of energy homeostasis, insulin resistance prevention, and impaired glucose tolerance. However, the molecular mechanisms by which adropin affects hepatic glucose and lipid metabolism in vitro are not entirely understood. This study intended to examine the roles and underlying mechanisms of adropin in glucose and lipid metabolism in Nile tilapia. In primary cultured tilapia hepatocytes, adropin significantly attenuated oleic acid (OA)-induced glucose output and reduced the activities and mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), which are involved in gluconeogenesis. In contrast, adropin facilitated glucose uptake activity via glucose transporter 1 (Glut1) upregulation in OA-treated hepatocytes. One-week of adropin treatment reduced the hepatic total lipid accumulation in OA-fed tilapia without changes in body weight. Subsequent studies revealed that adropin suppressed OA-induced intracellular triglyceride accumulation and decreased the expression of genes and proteins involved in lipid metabolisms such as sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase α (ACCα) and CD36, but upregulated peroxisome proliferator-activated receptor α (PPARα) levels. In parallel studies, however, adropin had no detectable effects on fatty acid-binding protein 4 (Fabp4) and carnitine palmitoyltransferase 1α (Cpt1α) mRNA expression. Furthermore, adropin treatment dose-dependently increased the phosphorylation level of AMP-activated protein kinase (AMPK). Suppression of AMPK by compound C or AMPKα1 siRNA blocked adropin-induced decreases in the mature form of SREBP-1c expression, glucose output, and intracellular triglyceride content in OA-treated hepatocytes. These findings suggest that teleost adropin could suppress hepatic gluconeogenesis and triglyceride accumulation via a mechanism dependent on AMPK signalling.


2018 ◽  
Vol 9 (5) ◽  
pp. 481-486 ◽  
Author(s):  
H. Kaur ◽  
C. R. Toop ◽  
B. S. Muhlhausler ◽  
S. Gentili

AbstractPerinatal exposure to sucrose or high-fructose corn syrup-55 (HFCS-55) in rats has previously been associated with altered hepatic fat content and composition post-weaning, although the effects on hepatic metabolism are unknown. The current study aimed to determine the sex-specific effects of maternal consumption of sucrose or HFCS-55 on the expression of hepatic lipogenic genes in the offspring. Liver samples were collected from offspring of albino Wistar rats provided with ad libitum access to either water (control), 10% sucrose or 10% HFCS-55 solution during pregnancy and lactation at 3 weeks (control n=16, sucrose n=22, HFCS-55 n=16) and 12 weeks (control n=16, sucrose n=10, HFCS-55 n=16) of age. Hepatic expression of the transcription factors such as carbohydrate response element-binding protein, sterol regulatory element-binding protein-1c and downstream genes was determined by quantitative real-time PCR. Sucrose-exposed offspring had higher hepatic SREBP-1c messenger RNA expression compared with control and HFCS-55 groups at both 3 weeks (P=0.01) and 12 weeks (P=0.03) of age. There were no differences in the expression of other hepatic lipogenic genes between groups at either 3 or 12 weeks. Thus, perinatal exposure to sucrose may be more detrimental to offspring hepatic metabolism compared with HFCS-55, independent of sex, and it will be important to evaluate the longer-term effects of perinatal sucrose exposure in future studies.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1181 ◽  
Author(s):  
Paulina Opyd ◽  
Adam Jurgoński ◽  
Jerzy Juśkiewicz ◽  
Bartosz Fotschki ◽  
Jarosław Koza

We hypothesize that defatting is an important factor that can determine the beneficial effects of flaxseeds on rats with diet-induced disorders. The experiment lasts 8 weeks and is conducted on Wistar rats allocated to four groups as follows: a control group fed with a standard diet; a high-fat (HF) group fed with a diet containing 21% fat and 0.1% cholic acid as a stimulator of lipid absorption; an HF group fed a diet supplemented with 1% native flaxseeds; and an HF group fed a diet supplemented with 1% defatted flaxseeds. In the HF group, several unfavourable changes in the gut and lipid metabolism are observed. Supplementation of the HF diet with native flaxseeds prevent an increase in colonic β-glucuronidase activity, whereas dietary defatted flaxseeds increase mucosal disaccharidase activities in the small intestine (sucrose, maltase and lactase). Regardless of the form of supplementation, dietary flaxseeds increase bacterial glycolytic activity in the distal intestine and decrease hepatic fat, especially triglyceride, accumulation. Both flaxseed forms decrease lipid peroxidation in the kidneys and increase the blood HDL cholesterol concentration with the native form being more efficient in the former and the defatted form being more efficient in the latter. The lipid-modulating effects of defatted flaxseeds are associated with reduced hepatic expression of peroxisome proliferator-activated receptor α, which is not the case in terms of native flaxseeds. Dietary supplementation with a relatively small amount of flaxseeds can exert beneficial effects on gut functions and lipid metabolism in rats, and these effects are affected by defatting to some extent.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Saroj Khatiwada ◽  
Virginie Lecomte ◽  
Margaret Morris ◽  
Chris Maloney

Abstract Objectives Growing evidence shows detrimental effects of paternal obesity on subsequent generations. We designed a micronutrient supplement whose components participate in one carbon metabolism and are anticipated to improve antioxidant capacity. Here, we studied the effects of the supplement on metabolic health and hepatic lipid metabolism in male rats consuming either a normal healthy diet or an obesogenic diet. Methods Male Sprague Dawley rats (3 weeks old, 17/group) were weaned onto control (CD) or high fat diet (HFD) with or without added micronutrient supplement (CDS; HFDS). After 12 weeks of diet, body composition was measured by magnetic resonance imaging, and blood samples were collected to assess supplementation levels. After 19 weeks of diet, oral glucose tolerance test (OGTT) was performed and plasma was collected to determine insulin release. At 27 weeks of diet, the rats were fasted and culled to harvest blood and tissues. Liver lipids and expression of genes involved in hepatic development and lipid metabolism were measured. Results Supplementation was confirmed by determining plasma folate concentrations (one component of supplement), which were increased by 26% across supplemented groups. HFD increased adiposity (P < 0.001) and body weight (P < 0.001), both of which were normalized in the HFDS group. HFD fed animals were glucose intolerant (blood glucose during OGTT, P = 0.005) compared to CD fed animals and had to release more insulin to clear an equivalent glucose load (insulin release during OGTT, P < 0.001). In comparison, the animals consuming HFDS needed less insulin to clear an equivalent glucose load (P < 0.001 vs HFD). HFD rats had larger livers than HFDS rats (P < 0.001). Micronutrient supplementation reduced hepatic triglyceride accumulation (P < 0.001) regardless of diet; this was accompanied by altered gene expression (particularly of CPT-1). Conclusions Dietary micronutrient supplementation prevented weight gain and adiposity, improved metabolic health, and excess lipid accumulation in liver in response to HFD. This provides evidence that the micronutrient supplement can preserve health and prevent fatty liver even when animals consume an obesogenic diet. Funding Sources NHMRC Australia project grant held by MJM and CAM. SK was supported by a UNSW international scholarship.


2020 ◽  
Vol 123 (12) ◽  
pp. 1345-1356 ◽  
Author(s):  
Houguo Xu ◽  
Qinggong Zhang ◽  
Shin-Kwon Kim ◽  
Zhangbin Liao ◽  
Yuliang Wei ◽  
...  

AbstractTaurine (TAU) plays important roles in the metabolism of bile acids, cholesterol and lipids. However, little relevant information has been available in fish where TAU has been identified as a conditionally essential nutrient. The present study aimed to investigate the effects of dietary TAU on the metabolism of bile acids, cholesterol and lipids in tiger puffer, which is both an important aquaculture species and a good research model, having a unique lipid storage pattern. An 8-week feeding trial was conducted in a flow-through seawater system. Three experimental diets differed only in TAU level, that is, 1·7, 8·2 and 14·0 mg/kg. TAU supplementation increased the total bile acid content in liver but decreased the content in serum. TAU supplementation also increased the contents of total cholesterol and HDL-cholesterol in both liver and serum. The hepatic bile acid profile mainly includes taurocholic acid (94·48 %), taurochenodeoxycholic acid (4·17 %) and taurodeoxycholic acid (1·35 %), and the contents of all these conjugated bile acids were increased by dietary TAU. The hepatic lipidomics analysis showed that TAU tended to decrease the abundance of individual phospholipids and increase those of some individual TAG and ceramides. The hepatic mRNA expression study showed that TAU stimulated the biosynthesis of both bile acids and cholesterol, possibly via regulation of farnesoid X receptor and HDL metabolism. TAU also stimulated the hepatic expression of lipogenic genes. In conclusion, dietary TAU stimulated the hepatic biosynthesis of both bile acids and cholesterol and tended to regulate lipid metabolism in multiple ways.


Sign in / Sign up

Export Citation Format

Share Document