Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets

2006 ◽  
Vol 290 (2) ◽  
pp. G293-G300 ◽  
Author(s):  
J. J. Cottrell ◽  
B. Stoll ◽  
R. K. Buddington ◽  
J. E. Stephens ◽  
L. Cui ◽  
...  

Premature infants receiving chronic total parenteral nutrition (TPN) due to feeding intolerance develop intestinal atrophy and reduced nutrient absorption. Although providing the intestinal trophic hormone glucagon-like peptide-2 (GLP-2) during chronic TPN improves intestinal growth and morphology, it is uncertain whether GLP-2 enhances absorptive function. We placed catheters in the carotid artery, jugular and portal veins, duodenum, and a portal vein flow probe in piglets before providing either enteral formula (ENT), TPN or a coinfusion of TPN plus GLP-2 for 6 days. On postoperative day 7, all piglets were fed enterally and digestive functions were evaluated in vivo using dual infusion of enteral (13C) and intravenous (2H) glucose, in vitro by measuring mucosal lactase activity and rates of apical glucose transport, and by assessing the abundances of sodium glucose transporter-1 (SGLT-1) and glucose transporter-2 (GLUT2). Both ENT and GLP-2 pigs had larger intestine weights, longer villi, and higher lactose digestive capacity and in vivo net glucose and galactose absorption compared with TPN alone. These endpoints were similar in ENT and GLP-2 pigs except for a lower intestinal weight and net glucose absorption in GLP-2 compared with ENT pigs. The enhanced hexose absorption in GLP-2 compared with TPN pigs corresponded with higher lactose digestive and apical glucose transport capacities, increased abundance of SGLT-1, but not GLUT-2, and lower intestinal metabolism of [13C]glucose to [13C]lactate. Our findings indicate that GLP-2 treatment during chronic TPN maintains intestinal structure and lactose digestive and hexose absorptive capacities, reduces intestinal hexose metabolism, and may facilitate the transition to enteral feeding in TPN-fed infants.

Planta Medica ◽  
2021 ◽  
Author(s):  
Matusorn Wongon ◽  
Nanteetip Limpeanchob

AbstractReduction of intestinal glucose absorption might result from either delayed carbohydrate digestion or blockage of glucose transporters. Previously, oxyresveratrol was shown to inhibit α-glucosidase, but its effect on glucose transporters has not been explored. The present study aimed to assess oxyresveratrol-induced inhibition of the facilitative glucose transporter 2 and the active sodium-dependent glucose transporter 1. An aqueous extract of Artocarpus lacucha, Puag Haad, which is oxyresveratrol-enriched, was also investigated. Glucose transport was measured by uptake into Caco-2 cells through either glucose transporter 2 or sodium-dependent glucose transporter 1 according to the culture conditions. Oxyresveratrol (40 to 800 µM) dose-dependently reduced glucose transport, which appeared to inhibit both glucose transporter 2 and sodium-dependent glucose transporter 1. Puag Haad at similar concentrations also inhibited these transporters but with greater efficacy. Oxyresveratrol and Puag Haad could help reduce postprandial hyperglycemic peaks, which are considered to be most damaging in diabetics.


2020 ◽  
Vol 99 (8) ◽  
pp. 977-986
Author(s):  
H. Ida-Yonemochi ◽  
K. Otsu ◽  
H. Harada ◽  
H. Ohshima

Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT ( SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT ( SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hye Kyung Kim

Aims of study. Present study investigated the effect ofEcklonia cava(EC) on intestinal glucose uptake and insulin secretion.Materials and methods. Intestinal Na+-dependent glucose uptake (SGU) and Na+-dependent glucose transporter 1 (SGLT1) protein expression was determined using brush border membrane vesicles (BBMVs). Glucose-induced insulin secretion was examined in pancreatic β-islet cells. The antihyperglycemic effects of EC, SGU, and SGLT1 expression were determined in streptozotocin (STZ)-induced diabetic mice.Results. Methanol extract of EC markedly inhibited intestinal SGU of BBMV with the IC50value of 345 μg/mL. SGLT1 protein expression was dose dependently down regulated with EC treatment. Furthermore, insulinotrophic effect of EC extract was observed at high glucose media in isolated pancreatic β-islet cellsin vitro. We next conducted the antihyperglycemic effect of EC in STZ-diabetic mice. EC supplementation markedly suppressed SGU and SGLT1 abundance in BBMV from STZ mice. Furthermore, plasma insulin level was increased by EC treatment in diabetic mice. As a result, EC supplementation improved postprandial glucose regulation, assessed by oral glucose tolerance test, in diabetic mice.Conclusion. These results suggest that EC play a role in controlling dietary glucose absorption at the intestine and insulinotrophic action at the pancreas contributing blood glucose homeostasis in diabetic condition.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1783-1794 ◽  
Author(s):  
Sybille D. Reichardt ◽  
Michael Föller ◽  
Rexhep Rexhepaj ◽  
Ganesh Pathare ◽  
Kerstin Minnich ◽  
...  

Glucocorticoid (GC) treatment of inflammatory disorders, such as inflammatory bowel disease, causes deranged metabolism, in part by enhanced intestinal resorption of glucose. However, the underlying molecular mechanism is poorly understood. Hence, we investigated transcriptional control of genes reported to be involved in glucose uptake in the small intestine after GC treatment and determined effects of GC on electrogenic glucose transport from transepithelial currents. GRvillinCre mice lacking the GC receptor (GR) in enterocytes served to identify the target cell of GC treatment and the requirement of the GR itself; GRdim mice impaired in dimerization and DNA binding of the GR were used to determine the underlying molecular mechanism. Our findings revealed that oral administration of dexamethasone to wild-type mice for 3 d increased mRNA expression of serum- and GC-inducible kinase 1, sodium-coupled glucose transporter 1, and Na+/H+ exchanger 3, as well as electrogenic glucose transport in the small intestine. In contrast, GRvillinCre mice did not respond to GC treatment, neither with regard to gene activation nor to glucose transport. GRdim mice were also refractory to GC, because dexamethasone treatment failed to increase both, gene expression and electrogenic glucose transport. In addition, the rise in blood glucose levels normally observed after GC administration was attenuated in both mutant mouse strains. We conclude that enhanced glucose transport in vivo primarily depends on gene regulation by the dimerized GR in enterocytes, and that this mechanism contributes to GC-induced hyperglycemia.


2021 ◽  
Vol 8 ◽  
Author(s):  
Eric Chang-Yi Lin ◽  
Shuoh-Wen Chen ◽  
Luen-Kui Chen ◽  
Ting-An Lin ◽  
Yu-Xuan Wu ◽  
...  

Glucosamine (GlcN) is the most widely consumed dietary supplement and exhibits anti-inflammatory effects. However, the influence of GlcN on immune cell generation and function is largely unclear. In this study, GlcN was delivered into mice to examine its biological function in hematopoiesis. We found that GlcN promoted the production of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs), both in vivo and in vitro. Additionally, GlcN upregulated the expression of glucose transporter 1 in hematopoietic stem and progenitor cells (HSPCs), influenced HSPC functions, and downregulated key genes involved in myelopoiesis. Furthermore, GlcN increased the expression of arginase 1 and inducible nitric oxide synthase to produce high levels of reactive oxygen species, which was regulated by the STAT3 and ERK1/2 pathways, to increase the immunosuppressive ability of MDSCs. We revealed a novel role for GlcN in myelopoiesis and MDSC activity involving a potential link between GlcN and immune system, as well as the new therapeutic benefit.


2022 ◽  
Author(s):  
Steinunn Sara Helgudóttir ◽  
Kasper Bendix Johnsen ◽  
Lisa Juul Routhe ◽  
Charlotte L.M. Rasmussen ◽  
Azra Karamehmedovic ◽  
...  

Abstract BackgroundThe objectives of the present study were to investigate whether the expression of transferrin receptor 1 (TfR1), glucose transporter 1 (Glut1), or Cluster of Differentiation 98 Heavy Chain (CD98hc) is epigenetically regulated in brain capillary endothelial cells (BCECs) denoting the blood-brain barrier (BBB).MethodsThe expression of these targets was investigated both in vitro and in vivo following treatment with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). Mice were injected intraperitoneally with VPA followed by analysis of isolated brain capillaries, and the capillary depleted brain samples. Brain tissue, isolated brain capillaries, and cultured primary endothelial cells were analyzed by RT-qPCR, immunolabeling and ELISA for expression of TfR1, Glut1 and CD98hc. We also studied the vascular targeting in VPA-treated mice injected with monoclonal anti-transferrin receptor (Ri7) conjugated with 1.4 nm gold nanoparticles. ResultsValidating the effects of VPA on gene transcription in BCECs, transcriptomic analysis identified 24,371 expressed genes, of which 305 were differentially expressed with 192 upregulated and 113 downregulated genes. In vitro using BCECs co-cultured with glial cells, the mRNA expression of Tfrc was significantly higher after VPA treatment for 6 h with its expression returning to baseline after 24 h. Conversely, the mRNA expression of Glut1 and Cd98hc was unaffected by VPA treatment. In vivo, the TfR1 protein expression in brain capillaries increased significantly after treatment with both 100 mg/kg and 400 mg/kg VPA. Conversely, VPA treatment did not increase GLUT1 or CD98hc. Using ICP-MS-based quantification, the brain uptake of nanogold conjugated anti-TfR1 antibodies was non-significant in spite of increased expression of TfR1. ConclusionsWe report that VPA treatment upregulates TfR1 at the BBB both in vivo and in vitro in isolated primary endothelial cells. In contrast, VPA treatment does not influence the expression of GLUT1 and CD98hc. The increase in the overall TfR1 protein expression however does not increase transport of TfR-targeted monoclonal antibody and indicates that targeted delivery using the transferrin receptor should aim for increased mobilization of already available transferrin receptor molecules to improve trafficking through the BBB.


2016 ◽  
Vol 75 (3) ◽  
pp. 342-355 ◽  
Author(s):  
Monica L. Castro-Acosta ◽  
Georgia N. Lenihan-Geels ◽  
Christopher P. Corpe ◽  
Wendy L. Hall

The prevalence of type 2 diabetes (T2D) is predicted to reach unprecedented levels in the next few decades. In addition to excess body weight, there may be other overlapping dietary drivers of impaired glucose homeostasis that are associated with an obesogenic diet, such as regular exposure to postprandial spikes in blood glucose arising from diets dominated by highly refined starches and added sugars. Strategies to reduce postprandial hyperglycaemia by optimising the functionality of foods would strengthen efforts to reduce the risk of T2D. Berry bioactives, including anthocyanins, are recognised for their inhibitory effects on carbohydrate digestion and glucose absorption. Regular consumption of berries has been associated with a reduction in the risk of T2D. This review aims to examine the evidence fromin vitro, animal and human studies, showing that berries and berry anthocyanins may act in the gut to modulate postprandial glycaemia. Specifically, berry extracts and anthocyanins inhibit the activities of pancreatic α-amylase and α-glucosidase in the gut lumen, and interact with intestinal sugar transporters, sodium-dependent glucose transporter 1 and GLUT2, to reduce the rate of glucose uptake into the circulation. Growing evidence from randomised controlled trials suggests that berry extracts, purées and nectars acutely inhibit postprandial glycaemia and insulinaemia following oral carbohydrate loads. Evidence to date presents a sound basis for exploring the potential for using berries/berry extracts as an additional stratagem to weight loss, adherence to dietary guidelines and increasing physical exercise, for the prevention of T2D.


1999 ◽  
Vol 160 (3) ◽  
pp. 443-452 ◽  
Author(s):  
K Ogura ◽  
M Sakata ◽  
M Yamaguchi ◽  
H Kurachi ◽  
Y Murata

Facilitative glucose transporter-1 (GLUT1) is expressed abundantly and has an important role in glucose transfer in placentas. However, little is known about the regulation of GLUT1 expression in placental cells. We studied the changes in placental GLUT1 levels in relation to changes in glucose concentration in vitro and in vivo. In in vitro experiments, dispersed mouse placental cells were incubated under control (5.5 mM) and moderately high (22 mM) glucose concentrations, and 2-deoxyglucose uptake into cells was studied on days 1-5 of culture. After 4 days of incubation under both conditions, GLUT1 mRNA and proten levels were examined by Northern and immunoblot analyses. Treatment of cells with 22 mM glucose resulted in a significant decrease in 2-deoxyglucose uptake compared with control, from day 2 to day 5 of culture. Moreover, GLUT1 mRNA and protein levels on day 4 of culture were significantly reduced in cells incubated with 22 mM glucose compared with control. Next, we rendered mice diabetic by administering 200 micrograms/g body weight streptozotocin (STZ) on day 8 of pregnancy. Animals were killed on day 12 of pregnancy and placental tissues were obtained. [3H]Cytochalasin B binding study was carried out to assess total GLUTs, and GLUT1 mRNA and protein were measured as above. [3H]Cytochalasin B binding sites in placentas from STZ-treated mice were significantly less than those in control mice. Northern and immunoblot analyses revealed a significant decrease in GLUT1 mRNA and protein levels in diabetic mice compared with the controls. These findings suggest that the glucose concentration may regulate the expression of placental GLUT1.


Sign in / Sign up

Export Citation Format

Share Document