scholarly journals Glucosamine Interferes With Myelopoiesis and Enhances the Immunosuppressive Activity of Myeloid-Derived Suppressor Cells

2021 ◽  
Vol 8 ◽  
Author(s):  
Eric Chang-Yi Lin ◽  
Shuoh-Wen Chen ◽  
Luen-Kui Chen ◽  
Ting-An Lin ◽  
Yu-Xuan Wu ◽  
...  

Glucosamine (GlcN) is the most widely consumed dietary supplement and exhibits anti-inflammatory effects. However, the influence of GlcN on immune cell generation and function is largely unclear. In this study, GlcN was delivered into mice to examine its biological function in hematopoiesis. We found that GlcN promoted the production of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs), both in vivo and in vitro. Additionally, GlcN upregulated the expression of glucose transporter 1 in hematopoietic stem and progenitor cells (HSPCs), influenced HSPC functions, and downregulated key genes involved in myelopoiesis. Furthermore, GlcN increased the expression of arginase 1 and inducible nitric oxide synthase to produce high levels of reactive oxygen species, which was regulated by the STAT3 and ERK1/2 pathways, to increase the immunosuppressive ability of MDSCs. We revealed a novel role for GlcN in myelopoiesis and MDSC activity involving a potential link between GlcN and immune system, as well as the new therapeutic benefit.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi125-vi125
Author(s):  
Tyler Alban ◽  
Defne Bayik ◽  
Balint Otvos ◽  
Matthew Grabowski ◽  
Manmeet Ahluwalia ◽  
...  

Abstract The immunosuppressive microenvironment in glioblastoma (GBM) enables persistent tumor growth and evasion from tumoricidal immune cell recognition. Despite a large accumulation of immune cells in the GBM microenvironment, tumor growth continues, and evidence for potent immunosuppression via myeloid derived suppressor cells (MDSCs) is now emerging. In agreement with these observations, we have recently established that increased MDSCs over time correlates with poor prognosis in GBM, making these cells of interest for therapeutic targeting. In seeking to reduce MDSCs in GBM, we previously identified the cytokine macrophage migration inhibitory factor (MIF) as a possible activator of MDSC function in GBM. Here, using a novel in vitro co-culture system to reproducibly and rapidly create GBM-educated MDSCs, we observed that MIF was essential in the generation of MDSCs and that MDSCs generated via this approach express a repertoire of MIF receptors. CD74 was the primary MIF receptor in monocytic MDSCs (M-MDSC), which penetrate the tumor microenvironment in preclinical models and patient samples. A screen of MIF/CD74 interaction inhibitors revealed that MN-166, a clinically relevant blood brain barrier penetrant drug, which is currently fast tracked for FDA approval, reduced MDSC generation and function in vitro. This effect was specific to M-MDSC subsets expressing CD74, and appeared as reduced downstream pERK signaling and MCP-1 secretion. In vivo, MN-166 was able reduce tumor-infiltrating MDSCs, while conferring a significant increase in survival in the syngeneic glioma model GL261. These data provide proof of concept that M-MDSCs can be targeted in the tumor microenvironment via MN-166 to reduce tumor growth and provide a rationale for future clinical assessment of MN-166 to reduce M-MDSCs in the tumor microenvironment. Ongoing studies are assessing the effects of MDSC inhibition in combination with immune activating approaches, in order to inhibit immune suppression while simultaneously activating the immune system.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 350
Author(s):  
Seong Mun Jeong ◽  
Yeon-Jeong Kim

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells which accumulate in stress conditions such as infection and tumor. Astaxanthin (ATX) is a well-known antioxidant agent and has a little toxicity. It has been reported that ATX treatment induces antitumor effects via regulation of cell signaling pathways, including nuclear factor erythroid-derived 2-related factor 2 (Nrf2) signaling. In the present study, we hypothesized that treatment with ATX might induce maturation of MDSCs and modulate their immunosuppressive activity. Both in vivo and in vitro treatment with ATX resulted in up-regulation of surface markers such as CD80, MHC class II, and CD11c on both polymorphonuclear (PMN)-MDSCs and mononuclear (Mo)-MDSCs. Expression levels of functional mediators involved in immune suppression were significantly reduced, whereas mRNA levels of Nrf2 target genes were increased in ATX-treated MDSCs. In addition, ATX was found to have antioxidant activity reducing reactive oxygen species level in MDSCs. Finally, ATX-treated MDSCs were immunogenic enough to induce cytotoxic T lymphocyte response and contributed to the inhibition of tumor growth. This demonstrates the role of ATX as a regulator of the immunosuppressive tumor environment through induction of differentiation and functional conversion of MDSCs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2779-2779
Author(s):  
Cesarina Giallongo ◽  
Nunziatina Parrinello ◽  
Daniele Tibullo ◽  
Piera La Cava ◽  
Alessandra Cupri ◽  
...  

Abstract Abstract 2779 Background: Tumor cells are able to develop immune evasion mechanisms which induce a state of immune tolerance and inactivate tumor-specific T cells. In this context, in some solid tumors it has been demonstrated that a subpopulation of myeloid cells, defined as “myeloid-derived suppressor cells” (MDSCs), plays an important role in inducing T cell tolerance by production of arginase that depletes microenvironment of arginine, an essential aminoacid for T cell function. Since chronic myeloid leukemia (CML) patients have high levels of immature myeloid cells it is of interest to investigate if these cells have MDSCs phenotype and activity. Aim: The aim of this study was to analyze MDSCs and investigate their involvement in T-cell anergy of CML patients. Methods: MDSCs were analyzed in peripheral blood (PB) of 13 CML patients (at diagnosis and during therapy) and healthy donors (HD; n=20) by cytofluorimetric analysis (CD14+DR- for monocytic MDSCs and CD11b+CD33+CD14-DR- for granulocytic MDSCs). Arginase 1 expression was assessed in PB of HD and CML patient using real time PCR. Purification of granulocytes, monocytes and lymphocytes from PB was performed by a positive magnetic separation kit (EasySep, STEMCELL Technologies). Arginase activity was measured in granulocyte lysates using a colorimetric test after enzymatic activation and arginine hydrolysis. To evaluate the activation of CD3+ T lymphocytes after incubation with phytoemagglutinin, we analyzed at 24, 48, 72 h the following markers: CD69+, CD71+, DR+. Microvesicles were isolated from CML serum at diagnosis (n=5) by sequential ultracentrifugation. Results: CML patients showed high levels of monocytic and granulocytic MDSCs at diagnosis in comparison to HD (63±8 and 83±12,2% respectively in CML vs 4,9±2,1 and 55,8±5,3% respectively in HD; p<0.001) while after 3–6 months of tyrosine kinase inhibitors (TKIs) therapy MDSC levels returned to normal values. Either in PB and in the purified granulocytes subpopulation, arginase1 expression showed a 30 fold increase in CML at diagnosis (CML vs HD: p<0.01) and decreased after therapy. We also evaluated arginase enzymatic activity in granulocytes and we found it increased in CML patients (n=4) compared to HD (n=5) (p<0.05). CML as well as HD T lymphocytes showed a normal activation in vitro which was significantly lost when they was incubated with CML serum (n=4). In addition, an increase of monocytic MDSCs in vitro was observed after incubation of HD monocytes with CML serum (39±6%; p<0.01) or microvescicles (9,2±1,2%; p<0.05) compared to control serum. Conclusions: Granulocytic and monocytic MDSCs are increased in CML patients at diagnosis and decrease during TKIs treatment. Their levels also correlates with Arginase 1 expression and enzymatic activity in granulocytes. CML serum as well as CML microvesicles increase the percentage of HD monocytic MDSCs. Moreover, CML serum leads to anergy of T lymphocytes, probably by Arginase 1 secretion. Disclosures: Off Label Use: Eltrombopag is a thrombopoietin receptor agonist indicated for the treatment of thrombocytopenia in patients with chronic immune (idiopathic) thrombocytopenic purpura (ITP).


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183271 ◽  
Author(s):  
Kuo-Ti Peng ◽  
Ching-Chuan Hsieh ◽  
Tsung-Yu Huang ◽  
Pei-Chun Chen ◽  
Hsin-Nung Shih ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Hang Yin Chu ◽  
Zihao Chen ◽  
Luyao Wang ◽  
Zong-Kang Zhang ◽  
Xinhuan Tan ◽  
...  

Clinical studies in a range of cancers have detected elevated levels of the Wnt antagonist Dickkopf-1 (DKK1) in the serum or tumors of patients, and this was frequently associated with a poor prognosis. Our analysis of DKK1 gene profile using data from TCGA also proves the high expression of DKK1 in 14 types of cancers. Numerous preclinical studies have demonstrated the cancer-promoting effects of DKK1 in both in vitro cell models and in vivo animal models. Furthermore, DKK1 showed the ability to modulate immune cell activities as well as the immunosuppressive cancer microenvironment. Expression level of DKK1 is positively correlated with infiltrating levels of myeloid-derived suppressor cells (MDSCs) in 20 types of cancers, while negatively associated with CD8+ T cells in 4 of these 20 cancer types. Emerging experimental evidence indicates that DKK1 has been involved in T cell differentiation and induction of cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms of DKK1 affecting cancers and immune cells have received great attention. This review introduces the rapidly growing body of literature revealing the cancer-promoting and immune regulatory activities of DKK1. In addition, this review also predicts that by understanding the interaction between different domains of DKK1 through computational modeling and functional studies, the underlying functional mechanism of DKK1 could be further elucidated, thus facilitating the development of anti-DKK1 drugs with more promising efficacy in cancer immunotherapy.


2022 ◽  
Author(s):  
Steinunn Sara Helgudóttir ◽  
Kasper Bendix Johnsen ◽  
Lisa Juul Routhe ◽  
Charlotte L.M. Rasmussen ◽  
Azra Karamehmedovic ◽  
...  

Abstract BackgroundThe objectives of the present study were to investigate whether the expression of transferrin receptor 1 (TfR1), glucose transporter 1 (Glut1), or Cluster of Differentiation 98 Heavy Chain (CD98hc) is epigenetically regulated in brain capillary endothelial cells (BCECs) denoting the blood-brain barrier (BBB).MethodsThe expression of these targets was investigated both in vitro and in vivo following treatment with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). Mice were injected intraperitoneally with VPA followed by analysis of isolated brain capillaries, and the capillary depleted brain samples. Brain tissue, isolated brain capillaries, and cultured primary endothelial cells were analyzed by RT-qPCR, immunolabeling and ELISA for expression of TfR1, Glut1 and CD98hc. We also studied the vascular targeting in VPA-treated mice injected with monoclonal anti-transferrin receptor (Ri7) conjugated with 1.4 nm gold nanoparticles. ResultsValidating the effects of VPA on gene transcription in BCECs, transcriptomic analysis identified 24,371 expressed genes, of which 305 were differentially expressed with 192 upregulated and 113 downregulated genes. In vitro using BCECs co-cultured with glial cells, the mRNA expression of Tfrc was significantly higher after VPA treatment for 6 h with its expression returning to baseline after 24 h. Conversely, the mRNA expression of Glut1 and Cd98hc was unaffected by VPA treatment. In vivo, the TfR1 protein expression in brain capillaries increased significantly after treatment with both 100 mg/kg and 400 mg/kg VPA. Conversely, VPA treatment did not increase GLUT1 or CD98hc. Using ICP-MS-based quantification, the brain uptake of nanogold conjugated anti-TfR1 antibodies was non-significant in spite of increased expression of TfR1. ConclusionsWe report that VPA treatment upregulates TfR1 at the BBB both in vivo and in vitro in isolated primary endothelial cells. In contrast, VPA treatment does not influence the expression of GLUT1 and CD98hc. The increase in the overall TfR1 protein expression however does not increase transport of TfR-targeted monoclonal antibody and indicates that targeted delivery using the transferrin receptor should aim for increased mobilization of already available transferrin receptor molecules to improve trafficking through the BBB.


2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 194-194
Author(s):  
M. R. Porembka ◽  
J. B. Mitchem ◽  
P. S. Goedegebuure ◽  
D. Linehan

194 Background: Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immunosuppressive cells that are upregulated in cancer. Little is known about the prevalence and importance of MDSC in pancreas adenocarcinoma (PA). Here, we quantify MDSC prevalence in patients with PA and assess the efficacy of MDSC depletion in a murine model of PA. Methods: Peripheral blood and tumor samples were collected from patients with PA, analyzed for MDSC (CD15+11b+) by flow cytometry (FC) and compared to cancer-free controls (CFC). The suppressive capacity of MDSC and the effectiveness of MDSC depletion were assessed in C57BL/6 mice inoculated with Pan02, a murine PA, and treated with placebo or zoledronic acid (ZA), a potent aminobisphosphonate previously shown to target MDSC. Endpoints included tumor size, survival, and MDSC prevalence. Tumor cell infiltrate was analyzed by FC for MDSC (Gr1+CD11b+) and effector T cells; tumor cytokine levels were measured by Luminex assay. Results: Patients with PA demonstrated increased circulating MDSC compared to CFC, which correlated with disease stage (metastatic PA: 68%±3.6% of CD45+ cells, resectable PA: 57%±3.5%, CFC: 37%±3.6%; p<0.0001). Normal pancreas tissue showed no MDSC infiltrate while PA avidly recruited CD11b+15+ cells to the primary tumor. Murine tumors similarly recruited MDSC that actively suppressed CD8+ T cells in vitro measured by CFSE dilution and accelerated tumor growth in vivo by adoptive transfer with Pan02 cells (p<0.001). Treatment with ZA impaired MDSC accumulation in the tumor (Placebo: 78%, ZA: 51%, p<0.05) resulting in delayed tumor growth rate (p<0.0001) and prolonged median survival (Placebo: 59 days, ZA: 73 days, p<0.05). MDSC blockade increased recruitment of T cells to the tumor (CD4: 4.4%±1.1% vs 12.2%±2.0%, p<0.05; CD8: 3.9%±1.3% vs 10.6%±2.2%, p<0.05) and a more robust type 1 response with increased levels of IFN-g (p<0.05) and decreased levels of IL-10 (p<0.05). Conclusions: MDSC are an important mediator of tumor-induced immunosuppression in PA. Treatment with ZA effectively blocks MDSC accumulation improving anti-tumor response in animal studies. Efforts to block MDSC may represent a novel treatment strategy for PA. [Table: see text]


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 792-792
Author(s):  
Alice Mui ◽  
Mike Kennah ◽  
Christopher Ong ◽  
Raymond Anderson ◽  
Heather Sutherland

Abstract Abstract 792 We recently described a novel anti-MM drug (AQX-MN100) which is a small molecule agonist of SHIP (Src homology-2 (SH2) containing inositol-5¢-phosphatase) a signaling molecule found only in hemopoietic cells.(Ong et al, Blood; 110:1942, 2007) The molecule was developed using a high-throughput SHIP enzyme assay to screen an invertebrate marine natural product library and isolate the Pelorol.(Yang et al Org Lett; 7:1073, 2005) SHIP normally functions to negatively regulate the PI3K pathway important to normal hemopoietic cells growth and function. Inappropriate activation of the phosphoinositide 3- kinase (PI3K) pathway has been shown to be involved in the pathogenesis of MM and tumour aggressiveness correlates with the degree of activation. The critical role the PI3K/Akt signaling pathway plays in regulating MM cell survival, has stimulated efforts in designing therapeutics that target this pathway. Pan PI3K inhibitors have limited utility in a clinical setting because of their inhibitory effects on all isoforms of the PI3K family as well as non-PI3K targets. SHIP is an exceptionally good target for MM and other hematopoietic disorders that display elevated PI3K/Akt signaling because its expression is restricted to hemopoietic cells. We have shown that an analogue of Pelorol, AQX-MN100 is able to inhibit PI3K signaling and prevent phosphorylation of Akt. AQX-MN100 induced MM cell line apoptosis mediated by caspase and was specific for SHIP expressing cells which are exclusively hematopoietic. AQX-MN100 also enhances the growth inhibition effects of current myeloma drugs Dexamethasone and Bortezomib on human MM tumour cell lines in vitro. (Kennah et al Expt Hematol; 37:1274, 2009) In this study we have extended these finding to further evaluate the role of this compound in the treatment of myeloma. NOD-SCID mice were injected in the lateral flanks with 2 million luciferase tagged MM1.S multiple myeloma cells in Matrigel. Tumors were allowed to establish for two weeks and then either AQX-MN100 or vehicle was administered in an oil deposit subcutaneously in the lower flank at a dose of 50 mg/kg every three days. Tumor volume was quantified by imaging on a Xenogen IVIS 200 after 6 and 11 days. These studies demonstrate a significant reduction of tumor volume at 6 days p<0.05 and a highly significant reduction at 11 days p<0.01 in the mice receiving AQX-MN100 as compared to vehicle. We have shown that AQX-MN100 can directly kill MM cells in in vitro and in vivo. However, based on the known functions of SHIP, we predict that SHIP agonists will additionally target critical steps in MM pathogenesis in vivo, including the ability of MM cells to interact with stromal elements and to subvert the immune system. In order to evaluate this later feature we evaluated the ability of SHIP agonists to reverse the tumor associated immune suppression in MM patients. Tumor and host cell/tumor microenvironment secreted factors promote the production and activation of cells associated with cancer progression: the immune suppressive myeloid derived suppressor cells (MDSC) and regulatory T cells (Tregs). These cells normally regulate immune responses by inhibiting the activation of immune effector cells. The involvement of SHIP in the regulation of these cells is predicted by the observation that MDSC and Treg numbers are elevated in SHIP deficient mice. In this study Balb/C mice, 6 mice/group in duplicate were given either AQX-MN100 3 mg/kg and 10 mg/kg or vehicle once daily orally. At the end of three weeks mesenteric lymph nodes were harvested and subjected to FACS analysis to determine the proportion of MDSC (CD11b+Gr1+) and Treg (CD4+CD25+FoxP3+) cells. Spleen cells were also analysed for B cells, NK cells and granulocytes. In both of the AQX-MN100 treated groups the numbers of MDSC and Tregs were significantly lower than controls while Total CD11b, Total CD3, and spleen B, NK and granulocytes were not different from vehicle treated controls. The known role of SHIP in regulating hemopoietic cell function and the role of SHIP agonists in MM cell killing as well as additional actions on other aspects of MM pathophysiology may make them a powerful treatment option for MM, either alone or in synergy with other known MM therapies. Further development of this agent for the treatment of MM is ongoing. Disclosures: Mui: Aquinox: Equity Ownership, Patents & Royalties. Ong:Aquinox: Equity Ownership, Patents & Royalties. Anderson:Aquinox: Equity Ownership, Patents & Royalties. Sutherland:Celgene: Honoraria; Orthobiotech: Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2711-2711
Author(s):  
Cesarina Giallongo ◽  
Nunziatina Parrinello ◽  
Daniele Tibullo ◽  
Piera La Cava ◽  
Alessandra Romano ◽  
...  

Abstract Introduction In some solid tumors it has been demonstrated that a subpopulation of myeloid cells, defined as “myeloid-derived suppressor cells” (MDSCs), plays an important role in inducing T cell tolerance by production of arginase 1 (arg1) that depletes microenvironment of arginine, an essential aminoacid for T cell function. Since chronic myeloid leukemia (CML) patients have high levels of immature myeloid cells it is of interest to investigate if these cells have MDSCs phenotype and activity. The aim of this study was to analyze MDSCs and investigate their activity in CML patients. Methods MDSCs were analyzed in peripheral blood (PB) of 20 healthy donors (HD) and 30 CML patients at diagnosis. In 21 patients MDSCs were also measured during TKI treatment. Granulocytic MDSCs (G-MDSCs) were identified as CD11b+CD33+CD14-HLADR- cells, while the monocytic MDSCs (Mo-MDSCs) as CD14+HLADR by cytofluorimetric analysis. Arg1 expression was assessed using real time PCR and Western Blot. Arg activity was measured in granulocyte lysates using a colorimetric test after enzymatic activation and arginine hydrolysis. Microvesicles (MV) were isolated from CML serum at diagnosis (n=5) by sequential ultracentrifugation. Results CML patients showed high levels of Mo- and G-MDSCs at diagnosis in comparison to HD (41±8 and 82,5±12,2% respectively for CML vs 9±2,1 and 55±5,3% for HD; p<0.001), while after TKIs therapy both subpopulations decreased, returning to normal values. T-reg (CD4+ CD25high Foxp3+ cells) were also significantly increased in CML patients at diagnosis in respect to HD (9±2% vs 6,1±0,8%, p<0.001) with a significant correlation with the percentage of Gr-MDSCs (r=0,6254; p<0.001). Both in PB and purified granulocytic cells, Arg1 expression showed a 30 fold increase in CML at diagnosis compared to HD (p<0.001) and decreased after therapy. The same data were confirmed by Western Blot analysis. Arg enzymatic activity in granulocytes resulted also increased in CML (n=10) compared to HD (n=10) (p<0.001). The suppressive function of CML G-MDSCs was demonstrated by their ability to inhibit the proliferation of CFSE+ HD T cells (p<0.001). In addition, an increase of Mo-MDSCs in vitro was observed after incubation of HD monocytes with CML sera (29±13%; p<0.0001) or MV (8±2,8%; p<0.05). Conclusions MDSCs are increased in CML patients at diagnosis and decrease during TKIs treatment. CML granulocytes have high arg1 activity and immunosuppressive activity. Moreover, CML serum as well as CML microvesicles increase the percentage of HD Mo-MDSCs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document