Neural mediation of vasoactive intestinal polypeptide inhibitory effect on jejunal alanine absorption

1998 ◽  
Vol 275 (4) ◽  
pp. G822-G828 ◽  
Author(s):  
K. A. Barada ◽  
N. E. Saadé ◽  
S. F. Atweh ◽  
C. F. Nassar

It was recently shown that vasoactive intestinal polypeptide (VIP) inhibits rat jejunal alanine absorption, an effect that was significantly reduced by vagotomy. This study assesses the role of capsaicin-sensitive primary afferents (CSPA) and the myenteric plexus in the inhibition of rat jejunal alanine absorption by VIP. Continuous intravenous infusion of VIP (11.2 ng ⋅ kg−1⋅ min−1) reduced alanine absorption by 60% in sham control rats and by 20% in rats neonatally treated with capsaicin ( P < 0.01). In in vitro experiments, VIP decreased alanine uptake by jejunal strips isolated from sham control rats in a dose-dependent manner. In the presence of 40 nM VIP, alanine uptake by full-thickness jejunal strips was reduced by 54% in sham control rats and by 25% in rats neonatally treated with capsaicin ( P < 0.001). On the other hand, VIP reduced alanine uptake by mucosal scrapings by 25% in sham rats compared with 9% reduction in neonatally treated rats. Chemical ablation of the extrinsic innervation and jejunal myenteric plexuses by pretreatment with benzalkonium chloride significantly ( P < 0.001) reduced basal alanine absorption and the inhibitory effect of VIP. Moreover, incubation of intestinal strips with tetrodotoxin and atropine reduced significantly ( P < 0.05) the inhibitory effect of VIP on alanine absorption. These data suggest that VIP exerts its inhibitory effect on alanine absorption through the CSPA fibers and the myenteric plexus. The neuronal circuitry of this inhibitory process may involve cholinergic muscarinic mechanisms.

1995 ◽  
Vol 268 (4) ◽  
pp. G695-G699 ◽  
Author(s):  
C. F. Nassar ◽  
K. A. Barada ◽  
L. E. Abdallah ◽  
W. S. Hamdan ◽  
A. M. Taha ◽  
...  

Capsaicin-sensitive primary afferent fibers (CSPA) in the small intestine regulate many functions through the release of peptides and neurotransmitters. This study was undertaken to assess the role of CSPA in the regulation of jejunal alanine absorption in the rat. In a series of in vivo experiments, the effects of the sensory neurotoxin capsaicin on small intestinal alanine absorption were evaluated. In vitro experiments were also done to study its effects on alanine uptake by isolated jejunal strips and mucosal scrapings. Jejunal alanine absorption was reduced by 27% when capsaicin (160 and 800 microM) was perfused intraluminally and by 21% when it was applied topically to the cervical vagi. On the other hand, bilateral cervical vagotomy and reversible block of vagal CSPA increased alanine absorption by 29 and 41%, respectively. In vitro, capsaicin reduced alanine uptake by intestinal strips in a dose-dependent manner. Maximal inhibition (36.5%) occurred at 400 microM with the mean ineffective concentration at 87 microM. Alanine uptake by jejunal mucosal scrapings, however, was decreased only by 6.7% when incubated with 1,600 microM capsaicin. These data suggest that vagal CSPA exerts a tonic inhibitory effect on alanine absorption and that capsaicin's inhibitory effect on alanine absorption is mediated largely by the capsaicin-sensitive afferent fibers.


1994 ◽  
Vol 72 (10) ◽  
pp. 1138-1147 ◽  
Author(s):  
Claus Schäfer ◽  
Hanna Steffen ◽  
Hartmut Printz ◽  
Burkhard Göke

Diastereomers of adenosine 3′,5′-phosphorothioate activate cAMP-dependent protein kinases (cAMP-PK) in vitro. We found that these compounds are highly selective tools to monitor cAMP-dependent PKA activation and its effect on amylase exocytosis from pancreatic acini. In permeabilized rat acinar cells, (Sp)-cAMPS dose-dependently stimulated amylase secretion, while (Rp)-cAMPS inhibited (Sp)-cAMPS-induced amylase release. In intact rat acini, 8-Br-(Sp)-cAMPS reduced the secretory responses to secretin, vasoactive intestinal polypeptide (VIP), 8-Br-cAMP, and 8-Br-(Sp)-cAMPS, but not to cerulein. Another derivative, dibutyryl-(Rp)-cAMPS, induced a small inhibitory effect against 8-Br-(Sp)-cAMPS and VIP, which was overlapped by an unspecific stimulatory effect on amylase exocytosis induced by the degradation product butyrate. Furthermore, (Sp)-5,6-dichloro-1-β-D-ribofuranosylbenzimidazole-3′,5′-monophosphorothioate ((Sp)-5,6-DCl-cBIMPS), a specific cAMP-PK activator, induced a maximal induction of cAMP-PK activity, but its stimulation of amylase secretion was less than that by secretin. (Sp)-5,6-DCl-cBIMPS regulated the phosphorylation of several proteins, which were also affected by secretin. However, secretin had additional effects. Its action was most likely mediated by a dual effect on the cAMP and the calcium pathway. Our results indicate that the cAMP-dependent pathway is involved in amylase exocytosis from rat pancreatic acini.Key words: secretin, vasoactive intestinal polypeptide, (Rp)-cAMPS, (Sp)-cAMPS, 8-Br-(Rp)-cAMPS, 8-Br-(Sp)-cAMPS, dibutyryl-(Rp)-cAMPS, (Sp)-5,6-DCl-cBIMPS, cAMP-dependent protein kinases, pancreatic acini, amylase secretion.


2001 ◽  
Vol 86 (2) ◽  
pp. 773-777 ◽  
Author(s):  
Chen-Jei Tai ◽  
Sung Keun Kang ◽  
Peter C. K. Leung

ATP has been shown to modulate progesterone production in human granulosa-luteal cells (hGLCs) in vitro. After binding to a G protein-coupled P2 purinergic receptor, ATP stimulates phospholipase C. The resultant production of diacylglycerol and inositol triphosphate activates protein kinase C (PKC) and intracellular calcium [Ca2+]i mobilization, respectively. In the present study, we examined the potential cross-talk between the PKC and Ca2+ pathway in ATP signal transduction. Specifically, the effect of PKC on regulating ATP-evoked[ Ca2+]i oscillations were examined in hGLCs. Using microspectrofluorimetry, [Ca2+]i oscillations were detected in Fura-2 loaded hGLCs in primary culture. The amplitudes of the ATP-triggered [Ca2+]i oscillations were reduced in a dose-dependent manner by pretreating the cells with various concentrations (1 nm to 10μ m) of the PKC activator, phorbol-12-myristate-13-acetate (PMA). A 10 μm concentration of PMA completely suppressed 10 μm ATP-induced oscillations. The inhibitory effect occurred even when PMA was given during the plateau phase of ATP evoked [Ca2+]i oscillations, suggesting that extracellular calcium influx was inhibited. The role of PKC was further substantiated by the observation that, in the presence of a PKC inhibitor, bisindolylmaleimide I, ATP-induced[ Ca2+]i oscillations were not completely suppressed by PMA. Furthermore, homologous desensitization of ATP-induced calcium oscillations was partially reversed by bisindolylmaleimide I, suggesting that activated PKC may be involved in the mechanism of desensitization. These results demonstrate that PKC negatively regulates the ATP-evoked [Ca2+]i mobilization from both intracellular stores and extracellular influx in hGLCs and further support a modulatory role of ATP and P2 purinoceptor in ovarian steroidogenesis.


2005 ◽  
Vol 288 (6) ◽  
pp. G1283-G1291 ◽  
Author(s):  
Most. Nahid Parvin ◽  
Shingo Kurabuchi ◽  
Kwartarini Murdiastuti ◽  
Chenjuan Yao ◽  
Chisato Kosugi-Tanaka ◽  
...  

Aquaporin (AQP)5, an exocrine-type water channel, was detected in the rat duodenum by Western blot analysis, and was localized by immunohistochemistry in the secretory granule membranes as well as in the apical and lateral aspects of the plasma membrane of Brunner's gland cells. Incubation of duodenal slices with vasoactive intestinal polypeptide (VIP) in vitro significantly increased the amount of AQP5 in the apical membrane fraction in a dose- and time-dependent manner with the amount reaching a plateau at 100 nM VIP and becoming near maximal after a 30-s incubation. Protein kinase inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7, 50 μM), and N-[2-( p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89; PKA-specific, 1 μM) blocked this increase, but PKC-specific inhibitor calphostin C did not, implying the involvement of PKA but not PKC in this cellular event. Intravenous injection with VIP (40 μg/kg body wt) provoked dilation of the lumen of the Brunner's gland at 2 and 7 min and increased the staining intensity of AQP5 in the apical and lateral membranes. AQP1 (both nonglycosylated and glycosylated forms) was also found to localize in the apical and basolateral membranes of cells of Brunner's gland. VIP, however, did not provoke any significant change in the AQP1 level in the apical membrane, as judged from the results of the above in vitro and in vivo experiments. These results suggest that VIP induced the exocytosis of granule contents and simultaneously caused translocation of AQP5 but not of AQP1 to the apical membrane in Brunner's gland cells.


1979 ◽  
Vol 237 (6) ◽  
pp. E535 ◽  
Author(s):  
J Fahrenkrug ◽  
O B Schaffalitzky de Muckadell ◽  
J J Holst ◽  
S L Jensen

The role of nerves that liberate vasoactive intestinal polypeptide (VIP) in the porcine pancrease as mediators of the atropine-resistant action of the vagus on flow and bicarbonate (HCO3) secretion was examined. Efferent electrical stimulation of the vagus in atropinized pigs produced a profuse flow of pancreatic juice with high HCO3 content concomitantly with a significant increase in pancreatic VIP output from 13 to 113 fmol/min. Intravenous administration of somatostatin (SRIF) during continuous electrical vagal stimulation caused a parallel suppression of the VIP release and the pancreatic fluid and HCO3 secretion to prestimulatory values. The SRIF-induced reduction in fluid and HCO3 secretion seemed to be mediated via an inhibition of the VIP release rather than through a direct effect on the exocrine cells, inasmuch as SRIF did not influence the VIP-provoked exocrine response from the in vitro isolated perfused porcine pancreas. The results support the view that VIP is transmitter in the vagally induced atropine-resistant water and HCO3 secretion from the porcine pancreas.


1987 ◽  
Vol 58 (02) ◽  
pp. 744-748 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
J C Barbenel ◽  
C D Forbes

SummarySpontaneous platelet aggregation (SPA) was studied in human whole blood at 3, 5, 10, 20, 30, 40 and 60 minutes after venepuncture. Using a whole blood platelet counter, SPA was quantified by measuring the fall in single platelet count upon rollermixing aliquots of citrated blood at 37° C. The extent of SPA increased with the time after venepuncture, with a correlation coefficient of 0.819. The inhibitory effect of dipyridamole (Dipy) on SPA was studied: (a) 10 μM at each time interval; (b) 0.5-100 μM at 3 and 30 minutes and (c) 15 μM in combination with 100 μM adenosine, 8 μM 2-chloroadenosine (2ClAd, an ADP receptor blocker) and 50 μM aspirin. There was a rapid decrease in the inhibitory effect of Dipy with the time after venepuncture; the correlation coefficient was -0.533. At all the concentrations studied, Dipy was more effective at 3 minutes than at 30 minutes after venepuncture. A combination of Dipy with adenosine, 2ClAd or aspirin was a more effective inhibitor of SPA than either drug alone. However, when 15 μM Dipy and 10 μM Ad were added together, the inhibitory effect of Dipy was not increased significantly, suggesting that Dipy inhibits platelet aggregation independent of Ad. The increase in SPA with the time after venepuncture was abolished when blood was taken directly into the anticoagulant containing 5 μM 2ClAd. It is suggested that ADP released from the red blood cells is responsible for the increased platelet aggregability with the time after venepuncture and makes a serious contribution to the artifacts of in vitro platelet function studies.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dasol Kim ◽  
Hui-Yun Hwang ◽  
Eun Sun Ji ◽  
Jin Young Kim ◽  
Jong Shin Yoo ◽  
...  

AbstractDisorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem’s biological activity, the target protein was identified via combined drug affinity responsive target stability and LC–MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 493
Author(s):  
 Chung-Yu Chen ◽  
Chien-Rung Chen ◽  
Chiao-Nan Chen ◽  
Paulus S. Wang ◽  
Toby Mündel ◽  
...  

The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations ([Ca2+]i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine. Pretreatment with the amphetamine for 2 h decreased the basal [Ca2+]i and prostaglandin F2α-stimulated increase of [Ca2+]i. Amphetamine inhibits progesterone and estradiol secretion in rat granulosa cells through a mechanism involving decreased PKA-downstream steroidogenic enzyme activity and L-type Ca2+ channels. Our current findings show that it is necessary to study the possibility of amphetamine perturbing reproduction in females.


Sign in / Sign up

Export Citation Format

Share Document