Long noncoding RNA LINC00342 promotes growth of infantile hemangioma by sponging miR-3619-5p from HDGF

2019 ◽  
Vol 317 (4) ◽  
pp. H830-H839 ◽  
Author(s):  
Zhen Liu ◽  
Zhenming Kang ◽  
Yujian Dai ◽  
Huiming Zheng ◽  
Yingjun Wang

Infantile hemangiomas (IH) are a type of benign vascular neoplasm that may cause permanent scarring. Hemangioma-derived endothelial cells (HemECs) are commonly used as an in vitro model to study IH. Long noncoding RNA is a type of RNA transcript longer than 200 nucleotides that does not encode any protein. LINC00342 was discovered to regulate proliferation and apoptosis in nonsmall cell lung cancer. However, the role of LINC00342 in IH has never been reported before. Expressions of LINC00342 and miR-3619-5p were detected in proliferating versus normal skin tissues. Colony formation and Cell-Couting Kit 8 assays were carried out to study the effects on cell proliferation after knockdown and overexpression of LINC00342, respectively. Meanwhile caspase-3 activity and nucleosomal fragmentation assay were applied to detect cell apoptosis. Micro-RNA binding sites on LINC00342 and hepatoma-derived growth factor (HDGF) were predicted and confirmed via dual-luciferase reporter assay. Biotin RNA pulldown assay was used to verify the direct binding between RNA molecules. LINC00342 enhanced proliferation and inhibited apoptosis in HemECs. MiR-3619-5p targeted both LINC00342 and HDGF, where LINC00342 sponged miR-3619-5p and positively regulated HDGF. HDGF knockdown rescued the effects of LINC00342 on HemECs. The LINC00342-miR-3619-5p-HDGF signaling pathway could regulate cell proliferation and apoptosis in HemECs. NEW & NOTEWORTHY The role of LINC00342 in infantile hemangiomas has not yet been elucidated. This paper highlights the regulatory role of LINC00342 in cell proliferation and apoptosis in hemangioma-derived endothelial cells and the underlying molecular mechanisms. The findings would provide potential target for treatment of infantile hemangiomas.

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Liyuan Zou ◽  
Xiaokun Ma ◽  
Shuo Lin ◽  
Bingyuan Wu ◽  
Yang Chen ◽  
...  

Abstract Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) plays an important role in protection of ischemia–reperfusion (I/R) injury in brain and liver. However, role of MEG3 in myocardial I/R injury remains unclear. Here, the role of MEG3 in protection of myocardial I/R injury and its association with microRNA-7-5p (miR-7-5p) was investigated using rat cardiac I/R model and myocardial I/R cell model. Our results showed that MEG3 was significantly up-regulated and miR-7-5p was significantly down-regulated after I/R. Following I/R, the levels of intact PARP and intact caspase-3 were reduced, while the cleaved fragments of PARP and caspase-3 were increased. TUNEL assay showed an increase in cardiomyocyte apoptosis after I/R. The levels of I/R-induced creatine kinase (CK) and lactate dehydrogenase (LDH) were inhibited by knockdown of MEG3 (siMEG3). SiMEG3 increased cell proliferation and inhibited cell apoptosis after I/R. In contrast, overexpression of MEG3 increased the I/R-induced CK and LDH activities and cell apoptosis and decreased cell proliferation. The dual-luciferase reporter system showed a direct binding of MEG3 to miR-7-5p. The level of miR-7-5p was negatively associated with the change in levels of MEG3 in H9c2 cells. The levels of intact RARP1 and caspase-3 were significantly increased by knockdown of MEG3. Co-transfection of miR-7-5p inhibitor with siMEG3 activates CK and LDH, significantly decreased cell proliferation, increased cell apoptosis, and decreased intact poly(ADP-ribose) polymerase 1 (PARP1) and caspase-3. In summary, down-regulation of MEG3 protects myocardial cells against I/R-induced apoptosis through miR-7-5p/PARP1 pathway, which might provide a new therapeutic target for treatment of myocardial I/R injury.


2020 ◽  
Vol 27 (1) ◽  
pp. 107327481989797 ◽  
Author(s):  
Dongdong Liu ◽  
Zheng Zou ◽  
Gen Li ◽  
Pengyu Pan ◽  
Guobiao Liang

Background: The mechanisms underlying the proliferation and apoptosis of glioma cells remain unelucidated. A recent study has revealed that microRNA-92b (miR-92b) inhibits apoptosis of glioma cells via downregulating DKK3. Notably, long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is predicted to have a possible interaction with miR-92b. Objective: This study aimed to identify whether NEAT1 affects glioma cell proliferation and apoptosis via regulating miR-92b. Methods: The expression of NEAT1 was compared between glioma tissues and adjacent tissues as well as between glioma cells and normal astrocytes using quantitative real-time polymerase chain reaction. Glioma cell proliferation was determined by using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and glioma cell apoptosis was determined by using the flow cytometry. Results: The expression of NEAT1 was low in glioma tissues and cells compared to the normal ones. Overexpression of NEAT1 inhibited proliferation and promoted apoptosis of glioma cell lines (U-87 MG and U251). The interaction between NEAT1 and miR-92b was confirmed using RNA immunoprecipitation, RNA pull-down assay, and luciferase reporter assay. Importantly, the tumor suppressor function of overexpressing NEAT1 was achieved by downregulating miR-92b and subsequently upregulating DKK3. Conclusion: Our findings indicated that NEAT1 acts as a tumor suppressor in glioma cells, which provides a novel target in overcoming glioma growth.


2021 ◽  
Vol 27 ◽  
Author(s):  
Lei Zheng ◽  
Liying Kang ◽  
Yan Cheng ◽  
Junli Cao ◽  
Lijie Liu ◽  
...  

Gastric cancer (GC) is one of the major malignancies worldwide. Emerging evidence has revealed the potential involvement of long noncoding RNA (lncRNA) in human genetic disorders and cancer, but the role of LOC100505817 remains unknown. Thus, in this study, we isolated tissues from GC patients to characterize the functional importance of LOC100505817 in GC tumorigenesis. We also proposed a hypothesis that the regulation of Wnt/β-catenin pathway by LOC100505817 was regulated by miR-20a-mediated WT1. After the collection of cancer tissues and adjacent tissues were obtained from GC patients, expression of LOC100505817, Wnt/β-catenin pathway- and EMT-related genes was quantified. Ectopic expression and knockdown experiments were applied in order to investigate the protective role of LOC100505817 in the progression of GC. Subsequently, cell viability, flow cytometry for apoptosis and cell cycle were detected via CCK-8, while migration and invasion were determined using scratch test and Transwell assay respectively. Then interactions among LOC100505817, miR-20a and WT1 were explored by dual luciferase reporter gene assay, RNA pull down assay and RNA binding protein immunoprecipitation (RIP) assay. The results found poor expression LOC100505817 was poorly expressed in GC cells and tissues. Overexpressed LOC100505817 resulted in the significant reduction of cell proliferation, migration and invasion as well as the expression of Wnt2b, β-catenin, CyclinD1, N-cadherin, Vimentin and snail, while increased cell apoptosis along with the expression of E-cadherin. Wnt/β-catenin pathway and EMT in GC cells were suppressed by LOC100505817 through miR-20a-inhibted WT1. In summary, our results provided evidence suggesting that LOC100505817 inhibits GC through LOC100505817-mediated inhibition of Wnt/β-catenin pathway, that leads to the overall restraining of GC cell proliferation, migration and invasion through miR-20a-reduced WT1.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yuhua He ◽  
Shuifang Xu ◽  
Yi Qi ◽  
Jinfang Tian ◽  
Fengying Xu

Abstract Background Small nucleolar RNA host gene 25 (SNHG25), a long noncoding RNA, has been well-studied in epithelial ovarian cancer. However, the specific functions of SNHG25 in endometrial cancer (EC) have not been studied yet. In this study, we aimed to elucidate the clinical significance of SNHG25 in EC and determine the regulatory activity of SNHG25 on the tumor-associated EC phenotype. We also thoroughly explored the molecular mechanisms underlying SNHG25 function in EC. Methods Gene expression was measured using quantitative real-time polymerase chain reaction. The detailed functions of SNHG25 in EC were examined by performing loss-of-function experiments. Moreover, the regulatory mechanisms involving SNHG25, microRNA-497-5p, and fatty acid synthase (FASN) were unveiled using the luciferase reporter assay and RNA immunoprecipitation. Results We observed a high level of SNHG25 in EC using the TCGA dataset and our study cohort. Patients with a high SNHG25 level had shorter overall survival than those with a low SNHG25 level. SNHG25 deficiency resulted in tumor-repressing activities in EC cells by decreasing cell proliferation, migration, and invasion and promoting cell apoptosis. Furthermore, the function of SNHG25 depletion in impairing tumor growth in vivo was confirmed. SNHG25 sequestered miR-497-5p as a competing endogenous RNA in EC and consequently positively regulated FASN expression. Thus, the decrease in miR-497-5p or increase in FASN could neutralize the modulatory actions of SNHG25 knockdown in EC cells. Conclusions The depletion of SNHG25 impedes the oncogenicity of EC by targeting the miR-497-5p/FASN axis. The newly elucidated SNHG25/miR-497-5p/FASN pathway may be a promising target for the molecular-targeted management of EC.


2021 ◽  
Author(s):  
hafiza sobia ramzan ◽  
Kashif Aziz Ahmad

Background: Osteoarthritis (OA) is a common disease of the joints among old populace until today. The treatment possibilities and roles of miRNA and long non-coding RNA (lncRNA) in therapy of OA has previously been explored. However, the functional roles of Long noncoding RNA KCNQ1OT1 and miRNA let-7a-5p on Osteoarthritis development and progression remains unclear. This study aimed at investigating the influence of KCNQ1OT1 on let-7a-5p in moderation of OA development and advancement. Materials and Methods: RT-qPCR examined expression of KCNQ1OT1and let-7a-5p in cultured human primary chondrocyte cell lines. Cell transfection overexpressed or knocked down the genes and CCK-8 assay measured cell viability in the proliferation biomarkers Ki87 and PCNA. While caspase-8 and caspase-3 activity determined rate of apoptosis. Furthermore, luciferase assay analyzed the luciferase activity and western blotting analysis determined the protein expression of KCNQ1OT1 and let-7a-5p in proliferation and apoptosis biomarkers. Results: The results demonstrated that KCNQ1OT1 is upregulated in OA-mimic cells and promotes the cell viability. KCNQ1OT1 knockdown suppresses cell viability of OA cells. Furthermore KCNQ1OT1 directly binds the 3'-UTR of let-7a-5p to negatively regulate let-7a-5p expression and OA progression. While upregulated let-7a-5p abolishes the proliferation effect of KCNQ1OT1 in OA cells. Conclusion: In summary, our study provides further insights into the underlying molecular mechanisms of KCNQ1OT1 and let-7a-5p suggesting a novel therapeutic approach to OA


2021 ◽  
Author(s):  
Yaping Liu ◽  
Xu Zhao ◽  
Yinnan Chen ◽  
Gang Guo ◽  
Jiansheng Wang ◽  
...  

Abstract To evaluate the expression of PITPNA-AS1 and miR-98-5p in gastric cancer tissues as well as their association with progression of gastric cancer, and investigate the role of PITPNA-AS1 and miR-98-5p in developing platinum resistance. RNA sequencing was used to identify candidate lncRNAs and microRNAs related to local recurrence of gastric cancer. qRT-PCR was used to investigate the expression of PITPNA-AS1 and miR-98-5p. CCK-8 and caspase3/7 activity were used to evaluate the cell proliferation and apoptosis rate. Dual luciferase reporter gene assay and RNA pull down were used to evaluate the cross talk between PITPNA-AS1 and miR-98-5p. PITPNA-AS1 and miR-98-5p could regulate cell proliferation and inhibit apoptosis in gastric cancer cell lines. Cisplatin and lobaplatin could significantly suppress the expression of PITPNA-AS1, which interacted with negatively regulated miR-98-5p expression. PITPNA-AS1 overexpression impaired the effect of platinum, which was partially reversed by downregulation of miR-98-5p knock down. In gastric cancer, PITPNA-AS1 and miR-98-5p could regulat cell growth, apoptosis and platinum resistance. They have the potential to be biomarkers and curative therapeutic targets. However, further research on molecular mechanisms are needed.


2018 ◽  
Vol 314 (6) ◽  
pp. C690-C701 ◽  
Author(s):  
Yun-xiao Zhou ◽  
Chuan Wang ◽  
Li-wei Mao ◽  
Yan-li Wang ◽  
Li-qun Xia ◽  
...  

LncRNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been confirmed to be involved in the tumorigenic progression of endometrial carcinoma (EC). However, the molecular mechanisms of HOTAIR in EC are not fully elucidated. The expression of HOTAIR and miR-646 in human EC tissues was determined by qRT-PCR. The effect of miR-646 on EC cells was assessed by the cell viability, migration, and invasion using CCK-8 assays and transwell assays. RNA-binding protein immunoprecipitation assays and RNA pull-down assays were performed to explore the interaction between HOTAIR and miR-646. The regulation of miR-646 on nucleophosmin 1 (NPM1) was tested using luciferase reporter assays. MiR-646 expression was significantly decreased both in human EC tissues ( n = 23) and cell lines (Ishikawa and HEC-1-A) compared with the control. Moreover, miR-646 expression was negatively related to HOTAIR in human EC tissues ( n = 23). Our results also showed that miR-646 overexpression considerably attenuated the E2-promoted viability, migration, and invasion of Ishikawa and HEC-1-A cells in vitro. In addition, HOTAIR was confirmed to regulate the viability, migration, and invasion of EC cells through negative regulating miR-646. More importantly, we also demonstrated that NPM1 was the target of miR-646, and HOTAIR promoted NPM1 expression through interacting with miR-646 in EC cells. Taken together, our findings presented that HOTAIR could regulate NPM1 via interacting with miR-646, thereby governing the viability, migration, and invasion of EC cells.


Sign in / Sign up

Export Citation Format

Share Document