scholarly journals Long noncoding RNA HOTAIR mediates the estrogen-induced metastasis of endometrial cancer cells via the miR-646/NPM1 axis

2018 ◽  
Vol 314 (6) ◽  
pp. C690-C701 ◽  
Author(s):  
Yun-xiao Zhou ◽  
Chuan Wang ◽  
Li-wei Mao ◽  
Yan-li Wang ◽  
Li-qun Xia ◽  
...  

LncRNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been confirmed to be involved in the tumorigenic progression of endometrial carcinoma (EC). However, the molecular mechanisms of HOTAIR in EC are not fully elucidated. The expression of HOTAIR and miR-646 in human EC tissues was determined by qRT-PCR. The effect of miR-646 on EC cells was assessed by the cell viability, migration, and invasion using CCK-8 assays and transwell assays. RNA-binding protein immunoprecipitation assays and RNA pull-down assays were performed to explore the interaction between HOTAIR and miR-646. The regulation of miR-646 on nucleophosmin 1 (NPM1) was tested using luciferase reporter assays. MiR-646 expression was significantly decreased both in human EC tissues ( n = 23) and cell lines (Ishikawa and HEC-1-A) compared with the control. Moreover, miR-646 expression was negatively related to HOTAIR in human EC tissues ( n = 23). Our results also showed that miR-646 overexpression considerably attenuated the E2-promoted viability, migration, and invasion of Ishikawa and HEC-1-A cells in vitro. In addition, HOTAIR was confirmed to regulate the viability, migration, and invasion of EC cells through negative regulating miR-646. More importantly, we also demonstrated that NPM1 was the target of miR-646, and HOTAIR promoted NPM1 expression through interacting with miR-646 in EC cells. Taken together, our findings presented that HOTAIR could regulate NPM1 via interacting with miR-646, thereby governing the viability, migration, and invasion of EC cells.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yuhua He ◽  
Shuifang Xu ◽  
Yi Qi ◽  
Jinfang Tian ◽  
Fengying Xu

Abstract Background Small nucleolar RNA host gene 25 (SNHG25), a long noncoding RNA, has been well-studied in epithelial ovarian cancer. However, the specific functions of SNHG25 in endometrial cancer (EC) have not been studied yet. In this study, we aimed to elucidate the clinical significance of SNHG25 in EC and determine the regulatory activity of SNHG25 on the tumor-associated EC phenotype. We also thoroughly explored the molecular mechanisms underlying SNHG25 function in EC. Methods Gene expression was measured using quantitative real-time polymerase chain reaction. The detailed functions of SNHG25 in EC were examined by performing loss-of-function experiments. Moreover, the regulatory mechanisms involving SNHG25, microRNA-497-5p, and fatty acid synthase (FASN) were unveiled using the luciferase reporter assay and RNA immunoprecipitation. Results We observed a high level of SNHG25 in EC using the TCGA dataset and our study cohort. Patients with a high SNHG25 level had shorter overall survival than those with a low SNHG25 level. SNHG25 deficiency resulted in tumor-repressing activities in EC cells by decreasing cell proliferation, migration, and invasion and promoting cell apoptosis. Furthermore, the function of SNHG25 depletion in impairing tumor growth in vivo was confirmed. SNHG25 sequestered miR-497-5p as a competing endogenous RNA in EC and consequently positively regulated FASN expression. Thus, the decrease in miR-497-5p or increase in FASN could neutralize the modulatory actions of SNHG25 knockdown in EC cells. Conclusions The depletion of SNHG25 impedes the oncogenicity of EC by targeting the miR-497-5p/FASN axis. The newly elucidated SNHG25/miR-497-5p/FASN pathway may be a promising target for the molecular-targeted management of EC.


2020 ◽  
Vol 134 (14) ◽  
pp. 1973-1990
Author(s):  
Huaiming Wang ◽  
Rongkang Huang ◽  
Wentai Guo ◽  
Xiusen Qin ◽  
Zifeng Yang ◽  
...  

Abstract Colorectal cancer (CRC) is often diagnosed at later stages after it has metastasized to other organs. The development of chemoresistance also contributes to a poor prognosis. Therefore, an increased understanding of the metastatic properties of CRC and chemoresistance could improve patient survival. CUGBP elav-like family member 1 (CELF1) is an RNA-binding protein, which is overexpressed in many human malignant tumors. However, the influence of CELF1 in CRC is unclear. V-ets erythroblastosis virus E26 oncogene homologue 2 (ETS2) is an evolutionarily conserved proto-oncogene known to be overexpressed in a variety of human cancers including CRC. In thespresent tudy, we investigated the association between CELF1 and ETS2 in CRC tumorigenesis and oxaliplatin (L-OHP) resistance. We found a positive correlation between the elevated expression of CELF1 and ETS2 in human CRC tissues. Overexpression of CELF1 increased CRC cell proliferation, migration, and invasion in vitro and in a xenograft tumor growth model in vivo, and induced resistance to L-OHP. In contrast, CELF1 knockdown improved the response of CRC cells to L-OHP. Overexpression of ETS2 increased the malignant behavior of CRC cells (growth, migration, and invasion) and L-OHP resistance in vitro. Moreover, L-OHP resistance induced by CELF1 overexpression was reversed by ETS2 knockdown. The results of luciferase reporter and ribonucleoprotein immunoprecipitation assays indicated that CELF1 up-regulates ETS2 by binding to its 3′-UTR. Taken together, our findings have identified that CELF1 regulates ETS2 in a mechanism that results in CRC tumorigenesis and L-OHP resistance, and CELF1 may be a promising target for overcoming chemoresistance in CRC.


2019 ◽  
Author(s):  
Shuaijun Dong ◽  
Xiefu Zhang ◽  
Dechun Liu

AbstractLong non-coding RNAs (lncRNAs) have emerged as important regulators of human cancers. LncRNA GAS5 (GAS5) is identified tumor suppressor involved in several cancers. However, the roles of GAS5 and the mechanisms responsible for its functions in gastric cancer (GC) have not been well undocumented. Herein, the decreased GAS5 and increased miRNA-106a-5p levels were observed in GC and cell lines. GAS5 expression level was significantly inversely correlated with miRNA-106a-5p level in GC tissues. Moreover, luciferase reporter and qRT-PCR assays showed that GAS5 bound to miRNA-106a-5p and negatively regulated its expression in GC cells. Functional experiments showed that GAS5 overexpression suppressed GC cell proliferation, migration, and invasion capabilities and promoted apoptosis, while miRNA-106a-5p overexpression inversed the functional effects induced by GAS5 overexpression. In vivo, GAS5 overexpression inhibited tumor growth by negatively regulating miRNA-106a-5p expression. Mechanistic investigations revealed that GAS5 overexpression inactivating the Akt/mToR pathway by suppressing miRNA-106a-5p expression in vitro and in vivo. Taken together, our findings conclude the GAS5 overexpression suppresses tumorigenesis and development of gastric cancer by sponging miR-106a-5p through the Akt/mToR pathway.


Author(s):  
Meng Zhang ◽  
Senlin Zhao ◽  
Cong Tan ◽  
Yanzi Gu ◽  
Xuefeng He ◽  
...  

Abstract Background MEK1/ERK signaling pathway plays an important role in most tumor progression, including colorectal cancer (CRC), however, MEK1-targeting therapy has little effective in treating CRC patients, indicating there may be a complex mechanism to activate MEK1/ERK signaling pathway except RAS activated mechanism. Methods To investigate the clinical significance of IMP3, we analyzed its expression levels in publicly available dataset and samples from Fudan University Shanghai Cancer Center. The effects of IMP3 on proliferation, migration, and invasion were determined by in vitro and in vivo experiments. To investigate the role of IMP3 in colon carcinogenesis, conditional IMP3 knockout C57BL/6 mice was generated. The IMP3/MEKK1/MEK/ERK signaling axis in CRC was screened and validated by RNA-sequencing, RNA immunoprecipitation, luciferase reporter and western blot assays. Results We find RNA binding protein IMP3 directly bind to MEKK1 mRNA 3′-UTR, which regulates its stability, promote MEKK1 expression and sequentially activates MEK1/ERK signaling. Functionally, IMP3 promote the malignant biological process of CRC cells via MEKK1/MEK1/ERK signaling pathway both in vitro and in vivo, Moreover, IMP3−/− mice show decreased the expression of MEKK1 as well as colorectal tumors compared with wild-type mice after treatment with azoxymethane/dextran sodium sulfate. Clinically, the expression of IMP3 and MEKK1 are positive correlated, and concomitant IMP3 and MEKK1 protein levels negatively correlate with metastasis in CRC patients. In addition, MEK1 inhibitor in combination with shRNA-IMP3 have a synergistic effect both in vitro and in vivo. Conclusion Our study demonstrates that IMP3 regulates MEKK1 in CRC, thus activating the MEK1/ERK signaling in the progression of colorectal cancer, Furthermore, these results provide new insights into potential applications for combining MEK1 inhibitors with other target therapy such as IMP3 in preclinical trials for CRC patients.


2019 ◽  
Vol 53 (4) ◽  
pp. 434-442 ◽  
Author(s):  
Wei Wang ◽  
Liang Ge ◽  
Xiao-Juan Xu ◽  
Ting Yang ◽  
Yue Yuan ◽  
...  

Abstract Background Endometrial cancer (EC) is one of the most common gynaecological tumours in the worldwide. Long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) promotes cell proliferation, migration and invasion in EC cells. However, the molecular mechanisms of NEAT1 in EC have not been fully clarified. We conducted this study to reveal the function of NEAT1 in EC tissues and cell lines. Materials and methods Cancer and adjacent tissues were collected from EC patients. HEC-1A and Ishikawa cells were cultured in vitro. NEAT1 expression was downregulated by transfecting small hairpin RNA (shRNA) and miR-144-3p was overexpressed by transfecting miR-144-3p mimics. Cell proliferation was detected by MTT assay and colony formation assay. Cell migration and invasion abilities were assessed by transwell assay. A dual-luciferase reporter assay was used to verify the relationship among NEAT1, EZH2, and miR-144-3p. The expression level of EZH2 was measured by Western blot and qPCR. Results NEAT1 was highly expressed in EC tissues and cells. Knockdown of NEAT1 inhibited the proliferation, migration and invasion of EC cells. Additionally, NEAT1 acted as a ceRNA of miR-144-3p, leading to EZH2 upregulation. Overexpression of miR-144-3p suppressed the proliferation and invasion of EC cells. Conclusions NEAT1 promotes EC cells proliferation and invasion by regulating the miR-144-3p/EZH2 axis.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Liang Yang ◽  
Jianshuai Jiang

Objectives. Long noncoding RNA (LncRNA) growth arrest-specific 5 (GAS5) has been characterized as a tumor suppressor in numerous kinds of human cancers. Its anticancer function in hepatocellular carcinoma (HCC) includes repression of cell proliferation and metastasis, leaving the internal mechanisms unclear. In this study, we intended to examine the anti-invasion effects of GAS5 on HCC and explore the downstream regulatory mechanisms.Methods. Expression of GAS5 and microRNA-135b (miR-135b) was analyzed by qRT-PCR in paired HCC tissue samples. Their correlation with HCC patients’ survival was determined. Transwell assays were done to evaluatein vitroinvasion ability. Targeting of GAS5 and RECK by miR-135b was confirmed by qRT-PCR, western blot, and luciferase reporter assays.Results. Decreased GAS5 and increased miR-135b in HCC inversely correlate with each other and both correlate with poor prognosis of HCC patients. Functionally, GAS5 suppresses while miR-135b promotes HCC cell invasion capacitiesin vitro. Mechanistically, GAS5 is a target of miR-135b. Furthermore, GAS5 positively regulates expression of RECK, also a target of miR-135b, which further inhibits MMP-2 expression and contributes to invasion repression.Conclusion. GAS5 acted as a tumor suppressor in HCC invasion in a competing endogenous RNA manner. Our findings indicate that GAS5 is a promising therapeutic target for HCC treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shuang Wang ◽  
Yuanyuan Cheng ◽  
Pingping Yang ◽  
Guang Qin

Purpose. This study was aimed at exploring the effect of long noncoding RNA LINC00324 (LINC00324) on gastric cancer (GC) and the potential molecular mechanisms. Methods. The expression of LINC00324 and miR-3200-5p in GC tissues and cells was detected by qRT-PCR. LINC00324 was silenced in GC cells by transfection of si-LINC00324. Then, the proliferation, migration, and invasion of GC cells were analyzed by MTT, wound healing, and transwell assays, respectively. The interactions between LINC00324 and miR-3200-5p and between miR-3200-5p and BCAT1 were determined by a dual-luciferase reporter and/or RNA pull-down assay. Results. The expression of LINC00324 was upregulated in GC cells and tissues, but miR-3200-5p was downregulated. Silencing of LINC00324 inhibited the proliferation, migration, and invasion of GC cells. LINC00324 directly targeted miR-3200-5p, and miR-3200-5p directly targeted BCAT1. si-LINC00324 negatively regulated BCAT1 expression via binding to miR-3200-5p. Furthermore, silencing of LINC00324 reversed the promoting effects of BCAT1 on the proliferation, migration, and invasion of GC cells. Conclusion. Silencing of LINC00324 inhibited the proliferation, migration, and invasion of GC cells through regulating the miR-3200-5p/BCAT1 axis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background Circular RNAs (circRNAs) have been reported to be important regulators of the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and the possible underlying mechanism. Methods The expression of circRNA_100290 in GC cells and tissues was examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated in the AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assays, Western blot assays and qRT-PCR were used to explore the pathways downstream of circRNA_100290. The mechanism underlying the regulation of circRNA_100290 expression was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays. Results The expression of circRNA_100290 was significantly upregulated in GC cells and 102 GC tissues, and high circRNA_100290 expression in GC was closely related to Borrmann’s type, lymph node metastasis and tumour-node-metastasis stage. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, a dual-luciferase reporter assay confirmed the direct interaction between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene that is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, an RNA-binding protein (RBP), could inhibit the formation of circRNA_100290 by binding to the flanking sites of circRNA_100290. Low EIF4A3 expression in GC was related to a poor prognosis. Conclusions Elevated circRNA_100290 expression in GC promotes cell proliferation, invasion and EMT via the miR-29b-3p/ITGA11 axis and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy. Graphical abstract


2021 ◽  
Author(s):  
Jing-yue Zhang ◽  
Yu Du ◽  
Li-ping Gong ◽  
Yi-ting Shao ◽  
Li-jie Pan ◽  
...  

Abstract Background: Emerging studies have showed that circular RNAs (circRNAs) are important regulators for tumorigenesis by modulating malignant behaviors of tumor cells. However, the functions of EBV-encoded circRNAs in EBV-associated gastric carcinoma (EBVaGC) remain poorly understood. Methods: The expression of ebv-circRPMS1 in EBVaGC tissues, xenografts and cell lines were analyzed by BaseScope, qRT-PCR and in situ hybridization (ISH). The effects of ebv-circRPMS1 on gastric carcinoma (GC) cell proliferation, apoptosis, migration and invasion were measured by CCK8, EdU, immunofluorescence (IF), FACS and Transwell assays. qRT-PCR, Western blotting, ChIP, RNA fluorescence in situ hybridization (RNA-FISH), luciferase reporter assays, mass spectrum, RNA immunoprecipitation (RIP), and pulldown assays were used to investigate the molecular mechanisms. Xenograft mouse model was also used to analyze the effect of ebv-circRPMS1 on GC growth and metastasis in vivo.Results: We demonstrated that ebv-circRPMS1 promoted the proliferation, migration, invasion and anti-apoptosis of EBVaGC cells. Mechanistically, ebv-circRPMS1 recruited the Sam68 complex to the promoter of METTL3 and enhanced its transcription. Moreover, overexpression of METTL3 induced transcriptional activation of downstream genes (such as SNAI1, ZMYM1 and SOCS2) via m6A modifications on their mRNAs, which were associated with tumor progression. Besides, RNA binding proteins (RBPs) such as QKI, DHX9 and ILF3, might involve in ebv-circRPMS1 biogenesis. In clinical EBVaGC samples, ebv-circRPMS1 was associated with distant metastasis and poor prognosis. Conclusion: These findings indicated that ebv-circRPMS1 contributed to EBVaGC progression through recruiting the Sam68 complex to activate METTL3 expression and its downstream targets. Ebv-circRPMS1, Sam68 and METTL3 may serve as therapeutic targets for EBVaGC.


2021 ◽  
Author(s):  
Meng Zhang ◽  
Senlin Zhao ◽  
Cong Tan ◽  
Yanzi Gu ◽  
Xuefeng He ◽  
...  

Abstract Background MEK1/ERK signaling pathway plays an important role in most tumor progression, including colorectal cancer (CRC), however, MEK1-targeting therapy has little effective in treating CRC patients, indicating there may be a complex mechanism to activate MEK1/ERK signaling pathway except RAS activated mechanism. Methods To investigate the clinical significance of IMP3, we analyzed its expression levels in publicly available dataset and samples from Fudan University Shanghai Cancer Center. The effects of IMP3 on proliferation, migration, and invasion were determined by in vitro and in vivo experiments. To investigate the role of IMP3 in colon carcinogenesis, conditional IMP3 knockout C57BL/6 mice was generated. The IMP3/MEKK1/MEK/ERK signaling axis in CRC was screened and validated by RNA-sequencing, RNA immunoprecipitation, luciferase reporter and western blot assays. Results We find RNA binding protein IMP3 directly bind to MEKK1 mRNA 3’-UTR, which regulates its stability, promote MEKK1 expression and sequentially activates MEK1/ERK signaling. Functionally, IMP3 promote the malignant biological process of CRC cells via MEKK1/MEK1/ERK signaling pathway both in vitro and in vivo, Moreover, IMP3−/− mice show decreased the expression of MEKK1 as well as colorectal tumors compared with wild-type mice after treatment with azoxymethane/dextran sodium sulfate. Clinically, the expression of IMP3 and MEKK1 are positive correlated, and concomitant IMP3 and MEKK1 protein levels negatively correlate with metastasis in CRC patients. In addition, MEK1 inhibitor in combination with shRNA-IMP3 have a synergistic effect both in vitro and in vivo. Conclusion Our study demonstrates that IMP3 regulates MEKK1 in CRC, thus activating the MEK1/ERK signaling in the progression of colorectal cancer, Furthermore, these results provide new insights into potential applications for combining MEK1 inhibitors with other target therapy such as IMP3 in preclinical trials for CRC patients.


Sign in / Sign up

Export Citation Format

Share Document