β-Myosin heavy chain myocytes are more resistant to changes in power output induced by ischemic conditions

2006 ◽  
Vol 290 (2) ◽  
pp. H869-H877 ◽  
Author(s):  
Aaron C. Hinken ◽  
Kerry S. McDonald

During ischemia intracellular concentrations of Pi and H+ increase. Also, changes in myosin heavy chain (MHC) isoform toward β-MHC have been reported after ischemia and infarction associated with coronary artery disease. The purpose of this study was to investigate the effects of myoplasmic changes of Pi and H+ on the loaded shortening velocity and power output of cardiac myocytes expressing either α- or β-MHC. Skinned cardiac myocyte preparations were obtained from adult male Sprague-Dawley rats (control or treated with 5- n-propyl-2-thiouracil to induce β-MHC) and mounted between a force transducer and servomotor system. Myocyte preparations were subjected to a series of isotonic force clamps to determine shortening velocity and power output during Ca2+ activations in each of the following solutions: 1) pCa 4.5 and pH 7.0; 2) pCa 4.5, pH 7.0, and 5 mM Pi; 3) pCa 4.5 and pH 6.6; and 4) pCa 4.5, pH 6.6, and 5 mM Pi. Added Pi and lowered pH each caused isometric force to decline to the same extent in α-MHC and β-MHC myocytes; however, β-MHC myocytes were more resistant to changes in absolute power output. For example, peak absolute power output fell 53% in α-MHC myocytes, whereas power fell only 38% in β-MHC myocytes in response to elevated Pi and lowered pH (i.e., solution 4). The reduced effect on power output was the result of a greater increase in loaded shortening velocity induced by Pi in β-MHC myocytes and an increase in loaded shortening velocity at pH 6.6 that occurred only in β-MHC myocytes. We conclude that the functional response to elevated Pi and lowered pH during ischemia is MHC isoform-dependent with β-MHC myocytes being more resistant to declines in power output.

1996 ◽  
Vol 271 (2) ◽  
pp. C676-C683 ◽  
Author(s):  
J. J. Widrick ◽  
S. W. Trappe ◽  
D. L. Costill ◽  
R. H. Fitts

Gastrocnemius muscle fiber bundles were obtained by needle biopsy from five middle-aged sedentary men (SED group) and six age-matched endurance-trained master runners (RUN group). A single chemically permeabilized fiber segment was mounted between a force transducer and a position motor, subjected to a series of isotonic contractions at maximal Ca2+ activation (15 degrees C), and subsequently run on a 5% polyacrylamide gel to determine myosin heavy chain composition. The Hill equation was fit to the data obtained for each individual fiber (r2 > or = 0.98). For the SED group, fiber force-velocity parameters varied (P < 0.05) with fiber myosin heavy chain expression as follows: peak force, no differences: peak tension (force/fiber cross-sectional area), type IIx > type IIa > type I; maximal shortening velocity (Vmax, defined as y-intercept of force-velocity relationship), type IIx = type IIa > type I; a/Pzero (where a is a constant with dimensions of force and Pzero is peak isometric force), type IIx > type IIa > type I. Consequently, type IIx fibers produced twice as much peak power as type IIa fibers, whereas type IIa fibers produced about five times more peak power than type I fibers. RUN type I and IIa fibers were smaller in diameter and produced less peak force than SED type I and IIa fibers. The absolute peak power output of RUN type I and IIa fibers was 13 and 27% less, respectively, than peak power of similarly typed SED fibers. However, type I and IIa Vmax and a/Pzero were not different between the SED and RUN groups, and RUN type I and IIa power deficits disappeared after power was normalized for differences in fiber diameter. Thus the reduced absolute peak power output of the type I and IIa fibers from the master runners was a result of the smaller diameter of these fibers and a corresponding reduction in their peak isometric force production. This impairment in absolute peak power production at the single fiber level may be in part responsible for the reduced in vivo power output previously observed for endurance-trained athletes.


2004 ◽  
Vol 287 (2) ◽  
pp. C500-C507 ◽  
Author(s):  
Aaron C. Hinken ◽  
Kerry S. McDonald

Force generation in striated muscle is coupled with inorganic phosphate (Pi) release from myosin, because force falls with increasing Pi concentration ([Pi]). However, it is unclear which steps in the cross-bridge cycle limit loaded shortening and power output. We examined the role of Pi in determining force, unloaded and loaded shortening, power output, and rate of force development in rat skinned cardiac myocytes to discern which step in the cross-bridge cycle limits loaded shortening. Myocytes ( n = 6) were attached between a force transducer and position motor, and contractile properties were measured over a range of loads during maximal Ca2+ activation. Addition of 5 mM Pi had no effect on maximal unloaded shortening velocity ( Vo) (control 1.83 ± 0.75, 5 mM added Pi 1.75 ± 0.58 muscle lengths/s; n = 6). Conversely, addition of 2.5, 5, and 10 mM Pi progressively decreased force but resulted in faster loaded shortening and greater power output (when normalized for the decrease in force) at all loads greater than ∼10% isometric force. Peak normalized power output increased 16% with 2.5 mM added Pi and further increased to a plateau of ∼35% with 5 and 10 mM added Pi. Interestingly, the rate constant of force redevelopment ( ktr) progressively increased from 0 to 10 mM added Pi, with ktr ∼360% greater at 10 mM than at 0 mM added Pi. Overall, these results suggest that the Pi release step in the cross-bridge cycle is rate limiting for determining shortening velocity and power output at intermediate and high relative loads in cardiac myocytes.


2006 ◽  
Vol 291 (4) ◽  
pp. R1076-R1084 ◽  
Author(s):  
Maureen Basha ◽  
Shaohua Chang ◽  
Elaine M. Smolock ◽  
Robert S. Moreland ◽  
Alan J. Wein ◽  
...  

Contractility of the proximal and distal vaginal wall smooth muscle may play distinct roles in the female sexual response and pelvic support. The goal of this study was to determine whether differences in contractile characteristics of smooth muscle from these regions reside in differences in the expression of isoforms of myosin, the molecular motor for muscle contraction. Adult female Sprague-Dawley rats were killed on the day of estrus, and the vagina was dissected into proximal and distal segments. The Vmax at peak force was greater for tissue strips of the proximal vagina compared with that of distal ( P < 0.01), although, at steady state, the Vmax for the muscle strips from the two regions was not different. Furthermore, at steady state, muscle stress was higher ( P < 0.001) for distal vaginal strips ( n = 5). Consistent with the high Vmax for the proximal vaginal strips, RT-PCR results revealed a higher %SM-B ( P < 0.001) in the proximal vagina. A greater expression of SM-B protein ( P < 0.001) was also detected by Western blotting ( n = 4). Interestingly, there was no regional difference noted in SM-1/SM-2 isoforms ( n = 6). The proximal vagina had a higher expression of myosin heavy chain protein ( P < 0.01) and a greater percentage of smooth muscle bundles ( P < 0.001). The results of this study are the first demonstration of a regional heterogeneity in Vmax and myosin isoform distribution in the vagina wall smooth muscle and confirm that the proximal vaginal smooth muscle exhibits phasic contractile characteristics compared with the distal vaginal smooth muscle, which is tonic.


2001 ◽  
Vol 281 (3) ◽  
pp. H1217-H1222 ◽  
Author(s):  
Todd J. Herron ◽  
F. Steven Korte ◽  
Kerry S. McDonald

The purpose of this study was to examine the role of myosin heavy chain (MHC) in determining loaded shortening velocities and power output in cardiac myocytes. Cardiac myocytes were obtained from euthyroid rats that expressed α-MHC or from thyroidectomized rats that expressed β-MHC. Skinned myocytes were attached to a force transducer and a position motor, and isotonic shortening velocities were measured at several loads during steady-state maximal Ca2+ activation (PpCa4.5). MHC expression was determined after mechanical measurements using SDS-PAGE. Both α-MHC and β-MHC myocytes generated similar maximal Ca2+-activated force, but α-MHC myocytes shortened faster at all loads and generated ∼170% greater peak normalized power output. Additionally, the curvature of force-velocity relationships was less, and therefore the relative load optimal for power output (Fopt) was greater in α-MHC myocytes. Fopt was 0.31 ± 0.03 PpCa4.5 and 0.20 ± 0.06 PpCa4.5 for α-MHC and β-MHC myocytes, respectively. These results indicate that MHC expression is a primary determinant of the shape of force-velocity relationships, velocity of loaded shortening, and overall power output-generating capacity of individual cardiac myocytes.


1998 ◽  
Vol 18 (12) ◽  
pp. 7243-7258 ◽  
Author(s):  
Madhu Gupta ◽  
Radovan Zak ◽  
Towia A. Libermann ◽  
Mahesh P. Gupta

ABSTRACT The expression of the α-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in α-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac α-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the α-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the α-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the α-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the α-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the α-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the α-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the α-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 871-883 ◽  
Author(s):  
K.E. Yutzey ◽  
J.T. Rhee ◽  
D. Bader

A unique myosin heavy chain cDNA (AMHC1), which is expressed exclusively in the atria of the developing chicken heart, was isolated and used to study the generation of diversified cardiac myocyte cell lineages. The pattern of AMHC1 gene expression during heart formation was determined by whole-mount in situ hybridization. AMHC1 is first activated in the posterior segment of the heart when these myocytes initially differentiate (Hamburger and Hamilton stage 9+). The anterior segment of the heart at this stage does not express AMHC1 although the ventricular myosin heavy chain isoform is strongly expressed beginning at stage 8+. Throughout chicken development, AMHC1 continues to be expressed in the posterior heart tube as it develops into the diversified atria. The early activation of AMHC1 expression in the posterior cardiac myocytes suggests that the heart cells are diversified when they differentiate initially and that the anterior heart progenitors differ from the posterior heart progenitors in their myosin isoform gene expression. The expression domain of AMHC1 can be expanded anteriorly within the heart tube by treating embryos with retinoic acid as the heart primordia fuse. Embryos treated with retinoic acid prior to the initiation of fusion of the heart primordia express AMHC1 throughout the entire heart-forming region and fusion of the heart primordia is inhibited. These data indicate that retinoic acid treatment produces an expansion of the posterior (atrial) domain of the heart and suggests that diversified fates of cardiomyogenic progenitors can be altered.


2002 ◽  
Vol 283 (1) ◽  
pp. H213-H219 ◽  
Author(s):  
Qianxun Xiao ◽  
Agnes Kenessey ◽  
Kaie Ojamaa

Contractile activity of the cardiac myocyte is required for maintaining cell mass and phenotype, including expression of the cardiac-specific α-myosin heavy chain (α-MHC) gene. An E-box hemodynamic response element (HME) located at position −47 within the α-MHC promoter is both necessary and sufficient to confer contractile responsiveness to the gene and has been shown to bind upstream stimulatory factor-1 (USF1). When studied in spontaneously contracting cardiac myocytes, there is enhanced binding of USF1 to the HME compared with quiescent cells, which correlates with a threefold increase in α-MHC promoter activity. A molecular mechanism by which contractile function modulates α-MHC transcriptional activity may involve signaling via phosphorylation of USF1. The present studies showed that purified rat USF1 was phosphorylated in vitro by protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) but not casein kinase II. Phosphorylated USF1 by either PKC or PKA had increased DNA binding activity to the HME. PKC-mediated phosphorylation also leads to the formation of USF1 multimers as assessed by gel shift assay. Analysis of in vivo phosphorylated nuclear proteins from cultured ventricular myocytes showed that USF1 was phosphorylated, and resolution by two-dimensional gel electrophoresis identified at least two distinct phosphorylated USF1 molecules. These results suggest that endogenous kinases can covalently modify USF1 and provide a potential molecular mechanism by which the contractile stimulus mediates changes in myocyte gene transcription.


1990 ◽  
Vol 96 (3) ◽  
pp. 581-601 ◽  
Author(s):  
D E Harris ◽  
D M Warshaw

In single smooth muscle cells, shortening velocity slows continuously during the course of an isotonic (fixed force) contraction (Warshaw, D.M. 1987. J. Gen. Physiol. 89:771-789). To distinguish among several possible explanations for this slowing, single smooth muscle cells were isolated from the gastric muscularis of the toad (Bufo marinus) and attached to an ultrasensitive force transducer and a length displacement device. Cells were stimulated electrically and produced maximum stress of 144 mN/mm2. Cell force was then reduced to and maintained at preset fractions of maximum, and cell shortening was allowed to occur. Cell stiffness, a measure of relative numbers of attached crossbridges, was measured during isotonic shortening by imposing 50-Hz sinusoidal force oscillations. Continuous slowing of shortening velocity was observed during isotonic shortening at all force levels. This slowing was not related to the time after the onset of stimulation or due to reduced isometric force generating capacity. Stiffness did not change significantly over the course of an isotonic shortening response, suggesting that the observed slowing was not the result of reduced numbers of cycling crossbridges. Furthermore, isotonic shortening velocity was better described as a function of the extent of shortening than as a function of the time after the onset of the release. Therefore, we propose that slowing during isotonic shortening in single isolated smooth muscle cells is the result of an internal load that opposes shortening and increases as cell length decreases.


Sign in / Sign up

Export Citation Format

Share Document