Spatial Frequency Content in Optical Mapping of Cardiac Cell Monolayers

2006 ◽  
Vol 291 (3) ◽  
pp. H1484-H1485 ◽  
Author(s):  
Harold Bien ◽  
Emilia Entcheva

Fluorescence imaging using voltage-sensitive dyes is an important tool for studying electrical propagation in the heart. Yet, the low amplitude of the voltage-sensitive component in the fluorescence signal and high acquisition rates dictated by the rapid propagation of the excitation wave front make it difficult to achieve recordings with high signal-to-noise ratios. Although spatially and temporally filtering the acquired signals has become de facto one of the key elements of optical mapping, there is no consensus regarding their use. Here we characterize the spatiotemporal spectra of optically recorded action potentials and determine the distortion produced by conical filters of different sizes. On the basis of these findings, we formulate the criteria for rational selection of filter characteristics. We studied the evolution of the spatial spectra of the propagating wave front after epicardial point stimulation of the isolated, perfused right ventricular free wall of the pig heart stained with di-4-ANEPPS. We found that short-wavelength (<3 mm) spectral components represent primarily noise and surface features of the preparation (coronary vessels, fat, and connective tissue). The time domain of the optical action potential spectrum also lacks high-frequency components (>100 Hz). Both findings are consistent with the reported effect of intrinsic blurring caused by light scattering inside the myocardial wall. The absence of high-frequency spectral components allows the use of aggressive low-pass spatial and temporal filters without affecting the optical action potential morphology. We show examples where the signal-to-noise ratio increased up to 150 with <3% distortion. A generalization of our approach to the rational filter selection in various applications is discussed.

2006 ◽  
Vol 291 (1) ◽  
pp. H327-H335 ◽  
Author(s):  
Sergey F. Mironov ◽  
Frederick J. Vetter ◽  
Arkady M. Pertsov

Fluorescence imaging using voltage-sensitive dyes is an important tool for studying electrical propagation in the heart. Yet, the low amplitude of the voltage-sensitive component in the fluorescence signal and high acquisition rates dictated by the rapid propagation of the excitation wave front make it difficult to achieve recordings with high signal-to-noise ratios. Although spatially and temporally filtering the acquired signals has become de facto one of the key elements of optical mapping, there is no consensus regarding their use. Here we characterize the spatiotemporal spectra of optically recorded action potentials and determine the distortion produced by conical filters of different sizes. On the basis of these findings, we formulate the criteria for rational selection of filter characteristics. We studied the evolution of the spatial spectra of the propagating wave front after epicardial point stimulation of the isolated, perfused right ventricular free wall of the pig heart stained with di-4-ANEPPS. We found that short-wavelength (<3 mm) spectral components represent primarily noise and surface features of the preparation (coronary vessels, fat, and connective tissue). The time domain of the optical action potential spectrum also lacks high-frequency components (>100 Hz). Both findings are consistent with the reported effect of intrinsic blurring caused by light scattering inside the myocardial wall. The absence of high-frequency spectral components allows the use of aggressive low-pass spatial and temporal filters without affecting the optical action potential morphology. We show examples where the signal-to-noise ratio increased up to 150 with <3% distortion. A generalization of our approach to the rational filter selection in various applications is discussed.


2002 ◽  
Vol 185 ◽  
pp. 236-237
Author(s):  
J.-M. Le Contel ◽  
P. Mathias ◽  
E. Chapellier ◽  
J.-C. Valtier

The star 53 Psc (HD 3379, B2.5IV) has been observed as variable by several authors (Sareyan et al., 1979) with frequencies around 10 c d–1 and has been classified as a β Cephei star. Conversely, other authors (e.g. Percy, 1971) found it to be constant.New high resolution, high signal-to-noise ratio, Spectroscopic observations have been performed at the Observatoire de Haute-Provence in 1996 over 11 nights. The spectral domain covers around 200 Å and is centered on Hδ. Radial velocities were deduced from an auto-correlation technique with a scatter around 0.4kms−1.No high frequency variations are observed. Three frequencies have been detected with a false alarm detection above the 1 % level. A fourth one may be present but its amplitude is below this 1 % level. Results are displayed in Table 1.


2021 ◽  
Author(s):  
Dmitry Rybashlykov ◽  
Jaclyn Brennan ◽  
Zexu Lin ◽  
Igor R. Efimov ◽  
Roman Syunyaev

Fluorescent imaging with voltage- or calcium-sensitive dyes, i.e. optical mapping, is one of the indispensable modern techniques to study cardiac electrophysiology, unsurpassed by temporal and spatial resolution. High-speed CMOS cameras capable of optical registration of action potential propagation are in general very costly. We present a complete solution priced below US$1,000 (including camera and lens) at the moment of publication with an open-source image acquisition and processing software. We demonstrate that the iDS UI-3130CP rev.2 camera we used in this study is capable of 200x200 977 frames per second (FPS) action potential recordings from rodent hearts. The signal-to-noise-ratio of a conditioned signal was 16 ± 10 for rodent hearts. A comparison with a specialized MiCAM Ultimate-L camera has shown that signal-to-noise ratio (SNR) is sufficient for accurate measurements of AP waveform, conduction velocity (± 0.04 m/s) and action potential duration (± 7ms) in mouse and rat hearts. We measured the action potential prolongation during 4-aminopyridine administration in mouse heart, showing that proposed system signal quality is adequate for drug studies.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2020 ◽  
Author(s):  
Rishikesh Kulkarni ◽  
Anneliese Gest ◽  
Chun Kei Lam ◽  
Benjamin Raliski ◽  
Feroz James ◽  
...  

<p>High signal-to-noise optical voltage indicators will enable simultaneous interrogation of membrane potential in large ensembles of neurons. However, design principles for voltage sensors with high sensitivity and brightness remain elusive, limiting the applicability of voltage imaging. In this paper, we use molecular dynamics (MD) simulations and density functional theory (DFT) calculations to guide the design of a bright and sensitive green-fluorescent voltage-sensitive fluorophore, or VoltageFluor (VF dye), that uses photoinduced electron transfer (PeT) as a voltage-sensing mechanism. MD simulations predict an 11% increase in sensitivity due to membrane orientation, while DFT calculations predict an increase in fluorescence quantum yield, but a decrease in sensitivity due to a decrease in rate of PeT. We confirm these predictions by synthesizing a new VF dye and demonstrating that it displays the expected improvements by doubling the brightness and retaining similar sensitivity to prior VF dyes. Combining theoretical predictions and experimental validation has resulted in the synthesis of the highest signal-to-noise green VF dye to date. We use this new voltage indicator to monitor the electrophysiological maturation of human embryonic stem cell-derived medium spiny neurons. </p>


2019 ◽  
Vol 15 (4) ◽  
pp. 443-466 ◽  
Author(s):  
Mahya Karami Mosammam ◽  
Mohammad Reza Ganjali ◽  
Mona Habibi-Kool-Gheshlaghi ◽  
Farnoush Faridbod

Background: Catecholamine drugs are a family of electroactive pharmaceutics, which are widely analyzed through electrochemical methods. However, for low level online determination and monitoring of these compounds, which is very important for clinical and biological studies, modified electrodes having high signal to noise ratios are needed. Numerous materials including nanomaterials have been widely used as electrode modifies for these families during the years. Among them, graphene and its family, due to their remarkable properties in electrochemistry, were extensively used in modification of electrochemical sensors. Objective: In this review, working electrodes which have been modified with graphene and its derivatives and applied for electroanalyses of some important catecholamine drugs are considered.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3443-3450 ◽  
Author(s):  
Wei-Nan Liu ◽  
Rui Chen ◽  
Wei-Yi Shi ◽  
Ke-Bo Zeng ◽  
Fu-Li Zhao ◽  
...  

AbstractSelective transmission or filtering always responds to either frequency or incident angle, so as hardly to maximize signal-to-noise ratio in communication, detection and sensing. Here, we propose compact meta-filters of narrow-frequency sharp-angular transmission peak along with broad omnidirectional reflection sidebands, in all-dielectric cascaded subwavelength meta-gratings. The inherent collective resonance of waveguide-array modes and thin film approximation of meta-grating are employed as the design strategy. A unity transmission peak, locating at the incident angle of 44.4° and the center wavelength of 1550 nm, is demonstrated in a silicon meta-filter consisting of two-layer silicon rectangular meta-grating. These findings provide possibilities in cascaded meta-gratings spectroscopic design and alternative utilities for high signal-to-noise ratio applications in focus-free spatial filtering and anti-noise systems in telecommunications.


2013 ◽  
Vol 109 (7) ◽  
pp. 1713-1723 ◽  
Author(s):  
Michael R. Markham ◽  
Leonard K. Kaczmarek ◽  
Harold H. Zakon

We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na+current ( INa) with extremely rapid recovery from inactivation (τrecov= 0.3 ms) allowing complete recovery of Na+current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K+current and a Na+-activated K+current ( IKNa), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased IKNais a function of enhanced Na+influx. Numerical simulations suggest that changing INamagnitude produces corresponding changes in AP amplitude and that KNachannels increase AP energy efficiency (10–30% less Na+influx/AP) over model cells with only voltage-gated K+channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na+channels and the novel use of KNachannels to maximize AP amplitude at a given Na+conductance.


2016 ◽  
Vol 7 (2) ◽  
pp. 381 ◽  
Author(s):  
Lukas B. Gromann ◽  
Dirk Bequé ◽  
Kai Scherer ◽  
Konstantin Willer ◽  
Lorenz Birnbacher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document