No ischemic preconditioning in heterozygous connexin43-deficient mice

2002 ◽  
Vol 283 (4) ◽  
pp. H1740-H1742 ◽  
Author(s):  
Uwe Schwanke ◽  
Ina Konietzka ◽  
Alexej Duschin ◽  
Xiaokui Li ◽  
Rainer Schulz ◽  
...  

Protein kinase Cε (PKCε) plays a central role in ischemic preconditioning (IP) in mice and rabbits, and activated PKCε colocalizes with and phosphorylates connexin43 (Cx43) in rats and humans. Whether or not Cx43 contributes to the mechanism(s) of IP in vivo is yet unknown. Therefore, wild-type (n = 8) and heterozygous Cx43-deficient mice (n = 8) were subjected to 30 min occlusion and 120 min reperfusion of the left anterior descending coronary artery. IP was induced by one cycle of 5 min occlusion and 10 min reperfusion ( n = 8/8 mice) before the sustained occlusion. Infarct size was reduced by IP in wild-type mice [11.3 ± 3.4% vs. 23.7 ± 7.2% of the left ventricle (LV), P < 0.05] but not in Cx43-deficient mice (26.0 ± 6.0% vs. 25.1 ± 3.8% of LV). Also, three cycles of 5 min occlusion and 10 min reperfusion (n = 5) did not induce protection in Cx43-deficient mice (27.6 ± 5.5 % of LV). Thus Cx43 contributes to the protection of IP in mice in vivo.

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Irene Cuadrado ◽  
Maria Jose Garcia Miguel ◽  
Irene Herruzo ◽  
Mari Carmen Turpin ◽  
Ana Martin ◽  
...  

Extracellular matrix metalloproteinase inducer EMMPRIN, is highly expressed in patients with acute myocardial infarction (AMI), and induces activation of several matrix metalloproteinases (MMPs), including MMP-9 and MMP-13. To prevent Extracellular matrix degradation and cardiac cell death we targeted EMMPRIN with paramagnetic/fluorescent micellar nanoparticles with an EMMPRIN binding peptide AP9 conjugated (NAP9), or an AP9 scramble peptide as a negative control (NAPSC). NAP9 binds to endogenous EMMPRIN as detected by confocal microscopy of cardiac myocytes and macrophages incubated with NAP and NAPSC in vitro, and in vivo in mouse hearts subjected to left anterior descending coronary artery occlusion (IV injection 50mγ/Kg NAP9 or NAP9SC). Administration of NAP9 at the same time or 1 hour after AMI reduced infarct size over a 20% respect to untreated and NAPSC injected mice, recovered left ventricle ejection fraction (LVEF) similar to healthy controls, and reduced EMMPRIN downstream MMP9 expression. In magnetic resonance scans of mouse hearts 2 days after AMI and injected with NAP9, we detected a significant gadolinium enhancement in the left ventricle respect to non-injected mice and to mice injected with NAPSC. Late gadolinium enhancement assays exhibited NAP9-mediated left ventricle signal enhancement as early as 30 minutes after nanoprobe injection, in which a close correlation between the MRI signal enhancement and left ventricle infarct size was detected. Taken together, these results point EMMPRIN targeted nanoprobes as a new tool for the treatment of AMI.


2006 ◽  
Vol 105 (3) ◽  
pp. 503-510 ◽  
Author(s):  
Markus Lange ◽  
Thorsten M. Smul ◽  
Christoph A. Blomeyer ◽  
Andreas Redel ◽  
Karl-Norbert Klotz ◽  
...  

Background Anesthetic and ischemic preconditioning share similar signal transduction pathways. The authors tested the hypothesis that the beta1-adrenergic signal transduction pathway mediates anesthetic and ischemic preconditioning in vivo. Methods Pentobarbital-anesthetized (30 mg/kg) rabbits (n = 96) were instrumented for measurement of systemic hemodynamics and subjected to 30 min of coronary artery occlusion and 3 h of reperfusion. Sixty minutes before occlusion, vehicle (control), 1.0 minimum alveolar concentration desflurane, or sevoflurane, and esmolol (30.0 mg x kg(-1) x h(-1)) were administered for 30 min, respectively. Administration of a single 5-min cycle of ischemic preconditioning was instituted 35 min before coronary artery occlusion. In separate groups, the selective blocker esmolol or the protein kinase A inhibitor H-89 (250 microg/kg) was given alone and in combination with desflurane, sevoflurane, and ischemic preconditioning. Results Baseline hemodynamics and area at risk were not significantly different between groups. Myocardial infarct size (triphenyltetrazolium staining) as a percentage of area at risk was 61 +/- 4% in control. Desflurane, sevoflurane, and ischemic preconditioning reduced infarct size to 34 +/- 2, 36 +/- 5, and 23 +/- 3%, respectively. Esmolol did not alter myocardial infarct size (65 +/- 5%) but abolished the protective effects of desflurane and sevoflurane (57 +/- 4 and 52 +/- 4%, respectively) and attenuated ischemic preconditioning (40 +/- 4%). H-89 did not alter infarct size (60 +/- 4%) but abolished preconditioning by desflurane (57 +/- 5%) and sevoflurane (61 +/- 1%). Ischemic preconditioning (24 +/- 7%) was not affected by H-89. Conclusions The results demonstrate that anesthetic preconditioning is mediated by the beta1-adrenergic pathway, whereas this pathway is not essential for ischemic preconditioning. These results indicate important differences in the mechanisms of anesthetic and ischemic preconditioning.


2001 ◽  
Vol 94 (4) ◽  
pp. 630-636 ◽  
Author(s):  
Jost Müllenheim ◽  
Jan Fräßdorf ◽  
Benedikt Preckel ◽  
Volker Thämer ◽  
Wolfgang Schlack

Background Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S(+)-ketamine on ischemic preconditioning in the rabbit heart in vivo. Methods In 46 alpha-chloralose-anesthetized rabbits, left ventricular pressure (tip manometer), cardiac output (ultrasonic flow probe), and myocardial infarct size (triphenyltetrazolium staining) at the end of the experiment were measured. All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. The control group underwent the ischemia-reperfusion program without preconditioning. Ischemic preconditioning was elicited by 5-min coronary artery occlusion followed by 10 min of reperfusion before the 30 min period of myocardial ischemia (preconditioning group). To test whether ketamine or S(+)-ketamine blocks the preconditioning-induced cardioprotection, each (10 mg kg(-1)) was administered 5 min before the preconditioning ischemia. To test any effect of ketamine itself, ketamine was also administered without preconditioning at the corresponding time point. Results Hemodynamic baseline values were not significantly different between groups [left ventricular pressure, 107 +/- 13 mmHg (mean +/- SD); cardiac output, 183 +/- 28 ml/min]. During coronary artery occlusion, left ventricular pressure was reduced to 83 +/- 14% of baseline and cardiac output to 84 +/- 19%. After 2 h of reperfusion, functional recovery was not significantly different among groups (left ventricular pressure, 77 +/- 19%; cardiac output, 86 +/- 18%). Infarct size was reduced from 45 +/- 16% of the area at risk in controls to 24 +/- 17% in the preconditioning group (P = 0.03). The administration of ketamine had no effect on infarct size in animals without preconditioning (48 +/- 18%), but abolished the cardioprotective effects of ischemic preconditioning (45 +/- 19%, P = 0.03). S(+)-ketamine did not affect ischemic preconditioning (25 +/- 11%, P = 1.0). Conclusions Ketamine, but not S(+)-ketamine blocks the cardioprotective effect of ischemic preconditioning in vivo.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2021 ◽  
Vol 99 (2) ◽  
pp. 218-223
Author(s):  
Mohamad Nusier ◽  
Mohammad Alqudah ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

This study examined the effects of ischemic preconditioning (IP) on the ischemia/reperfusion (I/R) induced injury in normal and hypertrophied hearts. Cardiac hypertrophy in rabbits was induced by L-thyroxine (0.5 mg/kg/day for 16 days). Hearts with or without IP (3 cycles of 5 min ischemia and 10 min reperfusion) were subjected to I/R (60 min ischemia followed by 60 min reperfusion). IP reduced the I/R-induced infarct size from 68% to 24% and 57% to 33% in the normal and hypertrophied hearts, respectively. Leakage of creatine phosphokinase in the perfusate from the hypertrophied hearts due to I/R was markedly less than that form the normal hearts; IP prevented these changes. Although IP augmented the increase in phosphorylated p38-mitogen-activated protein kinase (p38-MAPK) content due to I/R, this effect was less in the hypertrophied than in the normal heart. These results suggest that reduced cardioprotection by IP of the I/R-induced injury in hypertrophied hearts may be due to reduced activation of p38-MAPK in comparison with normal hearts.


2000 ◽  
Vol 279 (3) ◽  
pp. H1071-H1078 ◽  
Author(s):  
R. Ray Morrison ◽  
Rachael Jones ◽  
Anne M. Byford ◽  
Alyssa R. Stell ◽  
Jason Peart ◽  
...  

The role of A1adenosine receptors (A1AR) in ischemic preconditioning was investigated in isolated crystalloid-perfused wild-type and transgenic mouse hearts with increased A1AR. The effect of preconditioning on postischemic myocardial function, lactate dehydrogenase (LDH) release, and infarct size was examined. Functional recovery was greater in transgenic versus wild-type hearts (44.8 ± 3.4% baseline vs. 25.6 ± 1.7%). Preconditioning improved functional recovery in wild-type hearts from 25.6 ± 1.7% to 37.4 ± 2.2% but did not change recovery in transgenic hearts (44.8 ± 3.4% vs. 44.5 ± 3.9%). In isovolumically contracting hearts, pretreatment with selective A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine attenuated the improved functional recovery in both wild-type preconditioned (74.2 ± 7.3% baseline rate of pressure development over time untreated vs. 29.7 ± 7.3% treated) and transgenic hearts (84.1 ± 12.8% untreated vs. 42.1 ± 6.8% treated). Preconditioning wild-type hearts reduced LDH release (from 7,012 ± 1,451 to 1,691 ± 1,256 U · l−1 · g−1 · min−1) and infarct size (from 62.6 ± 5.1% to 32.3 ± 11.5%). Preconditioning did not affect LDH release or infarct size in hearts overexpressing A1AR. Compared with wild-type hearts, A1AR overexpression markedly reduced LDH release (from 7,012 ± 1,451 to 917 ± 1,123 U · l−1 · g−1 · min−1) and infarct size (from 62.6 ± 5.1% to 6.5 ± 2.1%). These data demonstrate that murine preconditioning involves endogenous activation of A1AR. The beneficial effects of preconditioning and A1AR overexpression are not additive. Taken with the observation that A1AR blockade equally eliminates the functional protection resulting from both preconditioning and transgenic A1AR overexpression, we conclude that the two interventions affect cardioprotection via common mechanisms or pathways.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Frederic Lluı́s ◽  
Josep Roma ◽  
Mònica Suelves ◽  
Maribel Parra ◽  
Gloria Aniorte ◽  
...  

Plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases involved in various tissue remodeling processes. A requirement for uPA activity in skeletal myogenesis was recently demonstrated in vitro. The role of plasminogen activators in skeletal muscle regeneration in vivo in wild-type, uPA-deficient, and tPA-deficient mice is investigated here. Wild-type and tPA−/− mice completely repaired experimentally damaged skeletal muscle. In contrast, uPA−/− mice had a severe regeneration defect, with decreased recruitment of blood-derived monocytes to the site of injury and with persistent myotube degeneration. In addition, uPA-deficient mice accumulated fibrin in the degenerating muscle fibers; however, the defibrinogenation of uPA-deficient mice resulted in a correction of the muscle regeneration defect. A similar severe regeneration deficit with persistent fibrin deposition was also reproducible in plasminogen-deficient mice after injury, suggesting that fibrinolysis by uPA-mediated plasminogen activation plays a fundamental role in skeletal muscle regeneration. In conclusion, the uPA-plasmin system is identified as a critical component of the mammalian skeletal muscle regeneration process, possibly because it prevents intramuscular fibrin accumulation and contributes to the adequate inflammatory response after injury. These studies demonstrate the requirement of an extracellular proteolytic cascade during muscle regeneration in vivo.


2019 ◽  
Author(s):  
Kristina A.M. Arendt ◽  
Giannoula Ntaliarda ◽  
Vasileios Armenis ◽  
Danai Kati ◽  
Christin Henning ◽  
...  

ABSTRACTKRAS inhibitors perform inferior to other targeted drugs. To investigate a possible reason for this, we treated cancer cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRASG12C), and silenced/overexpressed mutant KRAS using custom vectors. We show that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2/interleukin-1β signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in Ccr2 and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and predicted poor survival. Hence the findings support that in vitro systems are suboptimal for anti-KRAS drug screens, and suggest that interleukin-1β blockade might be specific for KRAS-mutant cancers.


Author(s):  
Melissa M. Dann ◽  
Sydney Q. Clark ◽  
Natasha A. Trzaskalski ◽  
Conner C. Earl ◽  
Luke E. Schepers ◽  
...  

Background: Ischemic heart disease is the leading cause of death in the United States, Canada, and worldwide. Severe disease is characterized by coronary artery occlusion, loss of blood flow to the myocardium, and necrosis of tissue, with subsequent remodeling of the heart wall, including fibrotic scarring. The current study aims to demonstrate the efficacy of quantitating infarct size via 2D echocardiographic akinetic length and 4D echocardiographic infarct volume and surface area as in vivo analysis techniques. We further describe and evaluate a new surface area strain analysis technique for estimating myocardial infarction (MI) size after ischemic injury. Methods: Experimental MI was induced in mice via left coronary artery ligation. Ejection fraction and infarct size were measured through 2D and 4D echocardiography. Infarct size established via histology was compared to ultrasound-based metrics via linear regression analysis. Results: 2D echocardiographic akinetic length (r = 0.76, p = 0.03), 4D echocardiographic infarct volume (r = 0.85, p = 0.008) and surface area (r = 0.90, p = 0.002) correlate well with histology. While both 2D and 4D echocardiography were reliable measurement techniques to assess infarct, 4D analysis is superior in assessing asymmetry of the left ventricle and the infarct. Strain analysis performed on 4D data also provides additional infarct sizing techniques, which correlate with histology (surface strain: r = 0.94, p < 0.001, transmural thickness: r = 0.76, p = 0.001). Conclusions: 2D echocardiographic akinetic length, 4D echocardiography ultrasound and strain provide effective in vivo methods for measuring fibrotic scarring after MI.


1996 ◽  
Vol 270 (3) ◽  
pp. H1078-H1084 ◽  
Author(s):  
J. L. Ardell ◽  
X. M. Yang ◽  
B. A. Barron ◽  
J. M. Downey ◽  
M. V. Cohen

To determine whether endogenous cardiac catecholamines mediate ischemic preconditioning (PC) in the rabbit heart, myocardial catecholamines were depleted by reserpine (5 mg/kg, 18-24 h pre-PC) or surgical sympathectomy (2 wk pre-PC). In vivo hearts were subjected to 30 min of regional ischemia and 3 h of reperfusion. PC involved either one or four cycles of 5-min ischemia and 10-min reperfusion before the 30-min ischemic period. Right ventricular norepinephrine content (pmol/mg protein), 51.4 +/- 11.1 in untreated rabbits, was reduced to 0.6 +/- 0.2 and 1.8 +/- 0.5 by surgical sympathectomy and reserpine, respectively. Infarct size (IS) was measured by tetrazolium and expressed as percentage of the risk zone. In untreated animals exposed solely to 30 min of regional ischemia IS was 35.5 +/- 1.6% and was unchanged by reserpine (43.3 +/- 5.4%) or surgical sympathectomy (33.4 +/- 3.5%). compared with infarction in the respective non-PC controls, IS in untreated (7.4 +/- 1.5%, P < 0.0001) and surgically sympathectomized (11.2 +/- 1.5%, P < 0.0001) animals was significantly diminished by a single cycle of PC, but the latter exerted less protection in reserpinized animals (27.6 +/- 3.5%, P < 0.0025). Four cycles of PC, however, reduced IS to 10.3 +/- 1.2% in reserpinized animals. Therefore, despite comparable depression of myocardial norepinephrine content, surgical and chemical sympathectomy had different effects on the level of protection afforded by ischemic PC. These data demonstrate that endogenous myocardial catecholamines are not essential for protection from PC in the rabbit.


Sign in / Sign up

Export Citation Format

Share Document