scholarly journals Transmural pressure and axial loading interactively regulate arterial remodeling ex vivo

2009 ◽  
Vol 297 (1) ◽  
pp. H475-H484 ◽  
Author(s):  
Amanda R. Lawrence ◽  
Keith J. Gooch

Physiological axial strains range between 40 and 60% in arteries, resulting in stresses comparable to those due to normal blood pressure or flow. To investigate the contribution of axial strain to arterial remodeling and function, porcine carotid arteries were cultured for 9 days at physiological and reduced axial stretch ratios in the presence of normotensive and hypertensive transmural pressures by ex vivo perfusion techniques. Consistent with previous in vivo studies, vessels cultured with physiological levels of axial strain and exposed to hypertensive pressure had greater mass, wall area, and outer diameter relative to those cultured at the same axial stretch ratio and normotensive pressure. Reducing the amount of axial strain resulted in mass loss and decreased cell proliferation. Culture in a hypertensive pressure environment at reduced axial strain produced arteries with greater contractility in response to norepinephrine. Arteries cultured at reduced axial strain with the matrix metalloproteinase inhibitor GM6001 maintained their masses over culture, indicating a possible mechanism for this model of axial stretch-dependent remodeling. Although not historically considered one of the primary stimuli for remodeling, multiple linear regression analysis revealed that axial strain had an impact similar to or greater than transmural pressure on various remodeling indexes (i.e., outer diameter, wall area, and wet mass), suggesting that axial strain is a primary mediator of vascular remodeling.

2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Amanda R. Lawrence ◽  
Keith J. Gooch

Arterial axial strains, present in the in vivo environment, often become reduced due to either bypass grafting or the normal aging process. Since the prevalence of hypertension increases with aging, arteries are often exposed to both decreased axial stretch and increased transmural pressure. The combined effects of these mechanical stimuli on the mechanical properties of vessels have not previously been determined. Porcine carotid arteries were cultured for 9 days at normal and reduced axial stretch ratios in the presence of normotensive and hypertensive transmural pressures using ex vivo perfusion techniques. Measurements of the amount of axial stress were obtained through longitudinal tension tests while inflation-deflation test results were used to determine circumferential stresses and incremental moduli. Macroscopic changes in artery geometry and zero-stress state opening angles were measured. Arteries cultured ex vivo remodeled in response to the mechanical environment, resulting in changes in arterial dimensions of up to ∼25% and changes in zero-stress opening angles of up to ∼55°. While pressure primarily affected circumferential remodeling and axial stretch primarily affected axial remodeling, there were clear examples of interactions between these mechanical stimuli. Culture with hypertensive pressure, especially when coupled with reduced axial loading, resulted in a rightward shift in the pressure-diameter relationship relative to arteries cultured with normotensive pressure. The observed differences in the pressure-diameter curves for cultured arteries were due to changes in artery geometry and, in some cases, changes in the arteries’ intrinsic mechanical properties. Relative to freshly isolated arteries, arteries cultured under mechanical conditions similar to in vivo conditions were stiffer, suggesting that aspects of the ex vivo culture other than the mechanical environment also influenced changes in the arteries’ mechanical properties. These results confirm the well-known importance of transmural pressure with regard to arterial wall mechanics while highlighting additional roles for axial stretch in determining mechanical behavior.


1994 ◽  
Vol 72 (05) ◽  
pp. 659-662 ◽  
Author(s):  
S Bellucci ◽  
W Kedra ◽  
H Groussin ◽  
N Jaillet ◽  
P Molho-Sabatier ◽  
...  

SummaryA double-blind, placebo-controlled randomized study with BAY U3405, a specific thromboxane A2 (TX A2) receptor blocker, was performed in patients suffering from severe stade II limb arteriopathy. BAY U3405 or placebo was administered in 16 patients at 20 mg four times a day (from day 1 to day 3). Hemostatic studies were done before therapy, and on day 2 and day 3 under therapy. On day 3, BAY U3405 was shown to induce a highly statistically significant decrease of the velocity and the intensity of the aggregations mediated by arachidonic acid (56 ± 37% for the velocity, 58 ± 26% for the intensity) or by U46619 endoperoxide analogue (36 ± 35% for the velocity, 37 ± 27% for the intensity). Similar results were already observed on day 2. By contrast, such a decrease was not noticed with ADP mediated platelet aggregation. Furthermore, plasma levels of betathrombo-globulin and platelet factor 4 remained unchanged. Peripheral hemodynamic parameters were also studied. The peripheral blood flow was measured using a Doppler ultrasound; the pain free walking distance and the total walking ability distance were determined under standardized conditions on a treadmill. These last two parameters show a trend to improvement which nevertheless was not statistically significant. All together these results encourage further in vivo studies using BAY U3405 or related compounds on a long-term administration.


Author(s):  
Y Madhusudan Rao ◽  
Gayatri P ◽  
Ajitha M ◽  
P. Pavan Kumar ◽  
Kiran kumar

Present investigation comprises the study of ex-vivo skin flux and in-vivo pharmacokinetics of Thiocolchicoside (THC) from transdermal films. The films were fabricated by solvent casting technique employing combination of hydrophilic and hydrophobic polymers. A flux of 18.08 µg/cm2h and 13.37µg/cm2h was achieved for optimized formulations containing 1, 8-cineole and oleic acid respectively as permeation enhancers. The observed flux values were higher when compared to passive control (8.66 µg/cm2h). Highest skin permeation was observed when 1,8-cineole was used as chemical permeation enhancer and it considerably (2-2.5 fold) improved the THC transport across the rat skin. In vivo studies were performed in rabbits and samples were analysed by LC-MS-MS. The mean area under the curve (AUC) values of transdermal film showed about 2.35 times statistically significant (p<0.05) improvement in bioavailability when compared with the oral administration of THC solution. The developed transdermal therapeutic systems using chemical permeation enhancers were suitable for drugs like THC in effective management of muscular pain.    


2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2020 ◽  
Vol 10 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Sheetu Wadhwa ◽  
Ashana Puri

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at target site, which requires frequent administration and poor patient compliance. Objective: The aim of current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for treatment of inflammatory skin disorders. Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test). Results: The particle size analyses revealed average diameter and polydispersity index of selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion i.e. 21.90 ± 1.92 μg/cm2 which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®. Conclusion: Research suggests efficacy of the developed MTZ loaded microemulsion in treatment of chronic skin inflammatory disorders.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 887
Author(s):  
Yun-Ju Huang ◽  
Yu-Chieh Chen ◽  
Hsin-Yuan Chen ◽  
Yi-Fen Chiang ◽  
Mohamed Ali ◽  
...  

Dysmenorrhea is one of the most prevalent disorders in gynecology. Historically, adlay (Coix lachryma-jobi L. var. Ma-yuen Stapf.) has been explored for its anti-tumor, pain relief, anti-inflammatory, and analgesic effects. The aim of this study was to evaluate the effects of adlay seeds on the inhibition of uterine contraction and thus dysmenorrhea relief, in vitro and in vivo. HPLC-MS and GC were used to elucidate the ethyl acetate fraction of adlay testa ethanolic extract (ATE-EA) and ethyl acetate fraction of adlay hull ethanolic extract (AHE-EA). Elucidation yielded flavonoids, phytosterols, and fatty acids. Uterine leiomyomas and normal adjacent myometrial tissue were evaluated by oxytocin- and PG-induced uterine contractility. ATE-EA and AHE-EA suppressed uterine contraction induced by prostaglandin F2 alpha (PGF2α), oxytocin, carbachol, and high-KCl solution ex vivo. In addition, the external calcium (Ca2+) influx induced contraction, and increased Ca2+ concentration was inhibited by ATE-EA and AHE-EA on the uterine smooth muscle of rats. Furthermore, ATE-EA and AHE-EA effectively attenuated the contraction of normal human myometrium tissues more than adjacent uterine leiomyoma in response to PGF2α. 3,5,6,7,8,3′,4′-Heptamethoxyflavone and chrysoeriol produced a remarkable inhibition with values of IC50 = 24.91 and 25.59 µM, respectively. The experimental results showed that treatment with ATE-EA at 30 mg/day effectively decreased the writhing frequency both on the oxytocin-induced writhing test and acetic acid writhing test of the ICR mouse.


2001 ◽  
Vol 20 (10) ◽  
pp. 533-550 ◽  
Author(s):  
V Ciaravino ◽  
T McCullough ◽  
A D Dayan

The pathogen inactivation process developed by Cerus and Baxter Healthcare Corporations uses the psoralen, S-59 (amotosalen) in an ex vivo photochemical treatment (PCT) process to inactivate viruses, bacteria, protozoans, and leukocytes in platelet concentrates and plasma. Studies were performed by intravenous infusion of S-59 PCT formulations-compound adsorption device (CAD) treatment and with non-UVA illuminated S-59, using doses that were multiples of potential clinical exposures. The studies comprised full pharmacokinetic, single and repeated-dose (up to 13 weeks duration) toxicity, safety pharmacology (CNS, renal, and cardiovascular), reproductive toxicity, genotoxicity, carcinogenicity testing in the p53- mouse, vein irritation, and phototoxicity. No specific target organ toxicity (clinical or histopathological), reproductive toxicity, or carcinogenicity was observed. S-59 and/or PCT formulations demonstrated CNS, ECG, and phototoxicity only at supraclinical doses. Based on the extremely large safety margins (>30,000 fold expected clinical exposures), the CNS and ECG observations are not considered to have any toxicological relevance. Additionally, after a complete assessment, mutagenicity and phototoxicity results are not considered relevant for the proposed use of INTERCEPT platelets. Thus, the results of an extensive series of in vitro and in vivo studies have not demonstrated any toxicologically relevant effects of platelet concentrates prepared by the INTERCEPT system.


2012 ◽  
Vol 64 (6) ◽  
pp. 1950-1959 ◽  
Author(s):  
Michael B. Ellman ◽  
Jae-Sung Kim ◽  
Howard S. An ◽  
Jeffrey S. Kroin ◽  
Xin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document