Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction

2010 ◽  
Vol 298 (5) ◽  
pp. H1415-H1425 ◽  
Author(s):  
Sih Min Tan ◽  
Yuan Zhang ◽  
Kim A. Connelly ◽  
Richard E. Gilbert ◽  
Darren J. Kelly

Following myocardial infarction (MI), the heart undergoes a pathological process known as remodeling, which in many instances results in cardiac dysfunction and ultimately heart failure and death. Transforming growth factor-β (TGF-β) is a key mediator in the pathogenesis of cardiac remodeling following MI. We thus aimed to inhibit TGF-β signaling using a novel orally active TGF-β type I receptor [activin receptor-like kinase 5 (ALK5)] inhibitor (GW788388) to attenuate left ventricular remodeling and cardiac dysfunction in a rat model of MI. Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce experimental MI and then were randomized to receive GW788388 at a dosage of 50 mg·kg−1·day−1 or vehicle 1 wk after surgery. After 4 wk of treatment, echocardiography was performed before the rats were euthanized. Animals that received left anterior descending coronary artery ligation demonstrated systolic dysfunction, Smad2 activation, myofibroblasts accumulation, collagen deposition, and myocyte hypertrophy (all P < 0.05). Treatment with GW788388 significantly attenuated systolic dysfunction in the MI animals, together with the attenuation of the activated (phosphorylated) Smad2 ( P < 0.01), α-smooth muscle actin ( P < 0.001), and collagen I ( P < 0.05) in the noninfarct zone of MI rats. Cardiomyocyte hypertrophy in MI hearts was also attenuated by ALK5 inhibition ( P < 0.05). In brief, treatment with a novel TGF-β type I receptor inhibitor, GW788388, significantly reduced TGF-β activity, leading to the attenuation of systolic dysfunction and left ventricular remodeling in an experimental rat model of MI.

2001 ◽  
Vol 281 (5) ◽  
pp. R1734-R1745 ◽  
Author(s):  
J. Francis ◽  
R. M. Weiss ◽  
S. G. Wei ◽  
A. K. Johnson ◽  
R. B. Felder

This study examined the early neurohumoral events in the progression of congestive heart failure (CHF) after myocardial infarction (MI) in rats. Immediately after MI was induced by coronary artery ligation, rats had severely depressed left ventricular systolic function and increased left ventricular end-diastolic volume (LVEDV). Both left ventricular function and the neurohumoral indicators of CHF underwent dynamic changes over the next 6 wk. LVEDV increased continuously over the study interval, whereas left ventricular stroke volume increased but reached a plateau at 4 wk. Plasma renin activity (PRA), arginine vasopressin, and atrial natriuretic factor all increased, but with differing time courses. PRA declined to a lower steady-state level by 4 wk. Six to 8 wk after MI, CHF rats had enhanced renal sympathetic nerve activity and blunted baroreflex regulation. These findings demonstrate that the early course of heart failure is characterized not by a simple “switching on” of neurohumoral drive, but rather by dynamic fluctuations in neurohumoral regulation that are linked to the process of left ventricular remodeling.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Benjamin Vogel ◽  
Hisahito Shinagawa ◽  
Ullrich Hofmann ◽  
Georg Ertl ◽  
Stefan Frantz

Rationale: Myocardial infarction (MI) leads to necrosis of multinucleated and polyploid myocytes. This causes uncontrolled release of cellular content like chromatin to the infarct area. Chromatin is mainly comprised of histones which are essential for controlling and packing of DNA but paradoxically are also known to be cytotoxic. This makes free chromatin a toxic DNA polymer creating local high concentrations of hazardous histones. Objective: We hypothesized that chromatin from necrotic cells accumulates in ischemic myocardium, creates local high concentrations of cytotoxic histones, and thereby potentiates ischemic damage to the heart after MI. The endonuclease DNase1 is capable of dispersing extracellular chromatin through linker DNA digestion and could decrease local histone concentrations and cytotoxicity. Methods and Results: After permanent coronary artery ligation in mice we found extracellular histones accumulated within the infarcted myocardium. Histone cytotoxicity towards isolated myocytes was confirmed in vitro. To reduce histone related cytotoxicity in vivo DNase1 was injected within the first 6 hours after induction of MI. DNase1 accumulated in the infarcted region of the heart, effectively disrupted extracellular cytotoxic chromatin and thereby reduced high local histone concentration. Animals acutely treated with DNase1 revealed significantly improved left ventricular remodeling as measured by serial echocardiography up to 28 days after MI (e.g. NaCl vs DNase1, papillary end diastolic area [mm 2 ]: 23.26 ± 2.06 vs 18.90 ± 1.24, n=9 vs 10, p<0,05). Treatment did not influence mortality, infarct size or inflammatory parameters as determined by neutrophil infiltration and RTQ-PCR analysis of characteristic cytokines. However improved myocyte survival was discovered within the infarct region which might account for the protective effects in DNase1 treated animals (NaCl vs DNase1: 3.0 ± 0.7% vs 8.3 ± 2.3%; p<0.05; n=7 vs 8). Conclusions: Targeting extracellular cytotoxic chromatin within the infarcted heart by DNase1 is a promising approach to preserve myocytes from histone induced cell death and to conserve left ventricular function after MI. The efficacy of other chromatin degrading agents is now under investigation.


2012 ◽  
Vol 303 (1) ◽  
pp. H75-H85 ◽  
Author(s):  
Toshinori Aoyagi ◽  
Yoichiro Kusakari ◽  
Chun-Yang Xiao ◽  
Brendan T. Inouye ◽  
Masaya Takahashi ◽  
...  

Cardiac mammalian target of rapamycin (mTOR) is necessary and sufficient to prevent cardiac dysfunction in pathological hypertrophy. However, the role of cardiac mTOR in heart failure after ischemic injury remains undefined. To address this question, we used transgenic (Tg) mice with cardiac-specific overexpression of mTOR (mTOR-Tg mice) to study ischemia-reperfusion (I/R) injury in two animal models: 1) in vivo I/R injury with transient coronary artery ligation and 2) ex vivo I/R injury in Langendorff-perfused hearts with transient global ischemia. At 28 days after I/R, mortality was lower in mTOR-Tg mice than littermate control mice [wild-type (WT) mice]. Echocardiography and MRI demonstrated that global cardiac function in mTOR-Tg mice was preserved, whereas WT mice exhibited significant cardiac dysfunction. Masson's trichrome staining showed that 28 days after I/R, the area of interstitial fibrosis was smaller in mTOR-Tg mice compared with WT mice, suggesting that adverse left ventricular remodeling is inhibited in mTOR-Tg mice. In the ex vivo I/R model, mTOR-Tg hearts demonstrated improved functional recovery compared with WT hearts. Perfusion with Evans blue after ex vivo I/R yielded less staining in mTOR-Tg hearts than WT hearts, indicating that mTOR overexpression inhibited necrosis during I/R injury. Expression of proinflammatory cytokines, including IL-6 and TNF-α, in mTOR-Tg hearts was lower than in WT hearts. Consistent with this, IL-6 in the effluent post-I/R injury was lower in mTOR-Tg hearts than in WT hearts. These findings suggest that cardiac mTOR overexpression in the heart is sufficient to provide substantial cardioprotection against I/R injury and suppress the inflammatory response.


2000 ◽  
Vol 279 (1) ◽  
pp. H422-H428 ◽  
Author(s):  
Flora Sam ◽  
Douglas B. Sawyer ◽  
Donny L.-F. Chang ◽  
Franz R. Eberli ◽  
Soeun Ngoy ◽  
...  

We tested the hypothesis that left ventricular (LV) remodeling late after myocardial infarction (MI) is associated with myocyte apoptosis in myocardium remote from the infarcted area and is related temporally to LV dilation and contractile dysfunction. One, four, and six months after MI caused by coronary artery ligation, LV volume and contractile function were determined using an isovolumic balloon-in-LV Langendorff technique. Apoptosis and nuclear morphology were determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) and Hoechst 33258 staining. Progressive LV dilation 1–6 mo post-MI was associated with reduced peak LV developed pressure (LVDP). In myocardium remote from the infarct, there was increased wall thickness and expression of atrial natriuretic peptide mRNA consistent with reactive hypertrophy. There was a progressive increase in the number of TUNEL-positive myocytes from 1 to 6 mo post-MI (2.9-fold increase at 6 mo; P < 0.001 vs. sham). Thus LV remodeling late post-MI is associated with increased apoptosis in myocardium remote from the area of ischemic injury. The frequency of apoptosis is related to the severity of LV dysfunction.


2019 ◽  
Vol 5 (1) ◽  
pp. 22 ◽  
Author(s):  
Henri Charrier ◽  
Marie Cuvelliez ◽  
Emilie Dubois-Deruy ◽  
Paul Mulder ◽  
Vincent Richard ◽  
...  

Heart failure (HF) has several etiologies including myocardial infarction (MI) and left ventricular remodeling (LVR), but its progression remains difficult to predict in clinical practice. Systems biology analyses of LVR after MI provide molecular insights into this event such as modulation of microRNA (miRNA) that could be used as a signature of HF progression. To define a miRNA signature of LVR after MI, we use 2 systems biology approaches, integrating either proteomic data generated from LV of post-MI rat induced by left coronary artery ligation or multi-omics data (proteins and non-coding RNAs) generated from plasma of post-MI patients from the REVE-2 study. The first approach predicted that 13 miRNAs and 3 of these miRNAs would be validated to be associated with LVR in vivo: miR-21-5p, miR-23a-3p and miR-222-3p. The second approach predicted that 24 miRNAs among 1310 molecules and 6 of these miRNAs would be selected to be associated with LVR in silico: miR-17-5p, miR-21-5p, miR-26b-5p, miR-222-3p, miR-335-5p and miR-375. We identified a signature of 7 microRNAs associated with LVR after MI that support the interest of integrative systems biology analyses to define a miRNA signature of HF progression.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 270 ◽  
Author(s):  
Luz Ibarra-Lara ◽  
María Sánchez-Aguilar ◽  
Elizabeth Soria-Castro ◽  
Jesús Vargas-Barrón ◽  
Francisco Roldán ◽  
...  

Myocardial infarction (MI) initiates an inflammatory response that promotes both beneficial and deleterious effects. The early response helps the myocardium to remove damaged tissue; however, a prolonged later response brings cardiac remodeling characterized by functional, metabolic, and structural pathological changes. Current pharmacological treatments have failed to reverse ischemic-induced cardiac damage. Therefore, our aim was to study if clofibrate treatment was capable of decreasing inflammation and apoptosis, and reverse ventricular remodeling and MI-induced functional damage. Male Wistar rats were assigned to (1) Sham coronary artery ligation (Sham) or (2) Coronary artery ligation (MI). Seven days post-MI, animals were further divided to receive vehicle (V) or clofibrate (100 mg/kg, C) for 7 days. The expression of IL-6, TNF-α, and inflammatory related molecules ICAM-1, VCAM-1, MMP-2 and -9, nuclear NF-kB, and iNOS, were elevated in MI-V. These inflammatory biomarkers decreased in MI-C. Also, apoptotic proteins (Bax and pBad) were elevated in MI-V, while clofibrate augmented anti-apoptotic proteins (Bcl-2 and 14-3-3ε). Clofibrate also protected MI-induced changes in ultra-structure. The ex vivo evaluation of myocardial functioning showed that left ventricular pressure and mechanical work decreased in infarcted rats; clofibrate treatment raised those parameters to control values. Echocardiogram showed that clofibrate partially reduced LV dilation. In conclusion, clofibrate decreases cardiac remodeling, decreases inflammatory molecules, and partly preserves myocardial diameters.


1999 ◽  
Vol 276 (3) ◽  
pp. H892-H900 ◽  
Author(s):  
Yo Murakami ◽  
Jianyi Zhang ◽  
Marcel H. J. Eijgelshoven ◽  
Wei Chen ◽  
Wenda C. Carlyle ◽  
...  

This study examined whether alterations in myocardial creatine kinase (CK) kinetics and high-energy phosphate (HEP) levels occur in postinfarction left ventricular remodeling (LVR). Myocardial HEP and CK kinetics were examined in 19 pigs 6 wk after myocardial infarction was produced by left circumflex coronary artery ligation, and the results were compared with those from 9 normal pigs. Blood flow (microspheres), oxygen consumption (MV˙o2), HEP levels [31P magnetic resonance spectroscopy (MRS)], and CK kinetics (31P MRS) were measured in myocardium remote from the infarct under basal conditions and during dobutamine infusion (20 μg ⋅ kg−1⋅ min−1iv). Six of the pigs with LVR had overt congestive heart failure (CHF) at the time of study. Under basal conditions, creatine phosphate (CrP)-to-ATP ratios were lower in all transmural layers of hearts with CHF and in the subendocardium of LVR hearts than in normal hearts ( P < 0.05). Myocardial ATP (biopsy) was significantly decreased in hearts with CHF. The CK forward rate constant was lower ( P < 0.05) in the CHF group (0.21 ± 0.03 s−1) than in LVR (0.38 ± 0.04 s−1) or normal groups (0.41 ± 0.03 s−1); CK forward flux rates in CHF, LVR, and normal groups were 6.4 ± 2.3, 14.3 ± 2.1, and 20.3 ± 2.4 μmol ⋅ g−1⋅ s−1, respectively ( P < 0.05, CHF vs. LVR and LVR vs. normal). Dobutamine caused doubling of the rate-pressure product in the LVR and normal groups, whereas CHF hearts failed to respond to dobutamine. CK flux rates did not change during dobutamine in any group. The ratios of CK flux to ATP synthesis (from MV˙o2) under baseline conditions were 10.9 ± 1.2, 8.03 ± 0.9, and 3.86 ± 0.5 for normal, LVR, and CHF hearts, respectively (each P < 0.05); during dobutamine, this ratio decreased to 3.73 ± 0.5, 2.58 ± 0.4, and 2.78 ± 0.5, respectively ( P = not significant among groups). These data demonstrate that CK flux rates are decreased in hearts with postinfarction LVR, but this change does not limit the response to dobutamine. In hearts with end-stage CHF, the changes in HEP and CK flux are more marked. These changes could contribute to the decreased responsiveness of these hearts to dobutamine.


Sign in / Sign up

Export Citation Format

Share Document