Coordinate regulation of SR Ca(2+)-ATPase and phospholamban expression in developing murine heart

1997 ◽  
Vol 272 (1) ◽  
pp. H57-H66 ◽  
Author(s):  
J. M. Harrer ◽  
K. Haghighi ◽  
H. W. Kim ◽  
D. G. Ferguson ◽  
E. G. Kranias

Phospholamban, the regulator of Ca(2+)-adenosinetriphosphatase (ATPase) activity in cardiac sarcoplasmic reticulum (SR), is an important determinant of basal myocardial performance. To determine whether phospholamban expression is developmentally regulated in the mouse and whether such regulation reflects alterations in Ca2+ pump activity, hearts from different stages of development were processed for molecular biological and biochemical studies. Both phospholamban and Ca(2+)-ATPase mRNAs were approximately 40% of adult (100%) levels at birth and gradually increased to approach adult levels by day 15 of development. These changes in transcript levels were indicative of changes at the protein level for both phospholamban and Ca(2+)-ATPase. Analysis of the initial rates of Ca2+ uptake demonstrated that over the course of development the upregulation of Ca(2+)-ATPase correlated with increases in the maximal rates of Ca2+ uptake and the constant apparent stoichiometric ratio of phospholamban to Ca(2+)-ATPase correlated with maintenance of a constant affinity of this enzyme for Ca2+ (0.25 +/- 0.03 microM Ca2+). Furthermore, targeted ablation of phospholamban in the mouse resulted in a much higher affinity of Ca2+ uptake for Ca2+ (0.10 +/- 0.02 microM Ca2+) than that observed in wild-type hearts, and this increased affinity was also maintained across different stages of postnatal development. These findings suggest that phospholamban is a major regulator of the affinity of Ca(2+)-ATPase for Ca2+, and coordinate regulation of the expression levels of these two SR proteins may be necessary for maintaining Ca2+ homeostasis in the developing mammalian heart.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Yuhao Dong ◽  
Qing Li ◽  
Jinzhu Geng ◽  
Qing Cao ◽  
Dan Zhao ◽  
...  

AbstractThe TonB system is generally considered as an energy transporting device for the absorption of nutrients. Our recent study showed that deletion of this system caused a significantly increased sensitivity of Aeromonas hydrophila to the macrolides erythromycin and roxithromycin, but had no effect on other classes of antibiotics. In this study, we found the sensitivity of ΔtonB123 to all macrolides tested revealed a 8- to 16-fold increase compared with the wild-type (WT) strain, but this increase was not related with iron deprivation caused by tonB123 deletion. Further study demonstrated that the deletion of tonB123 did not damage the integrity of the bacterial membrane but did hinder the function of macrolide efflux. Compared with the WT strain, deletion of macA2B2, one of two ATP-binding cassette (ABC) types of the macrolide efflux pump, enhanced the sensitivity to the same levels as those of ΔtonB123. Interestingly, the deletion of macA2B2 in the ΔtonB123 mutant did not cause further increase in sensitivity to macrolide resistance, indicating that the macrolide resistance afforded by the MacA2B2 pump was completely abrogated by tonB123 deletion. In addition, macA2B2 expression was not altered in the ΔtonB123 mutant, indicating that any influence of TonB on MacA2B2-mediated macrolide resistance was at the pump activity level. In conclusion, inactivation of the TonB system significantly compromises the resistance of A. hydrophila to macrolides, and the mechanism of action is related to the function of MacA2B2-mediated macrolide efflux.


Author(s):  
Kazuho Isono ◽  
Ryo Tsukimoto ◽  
Satoshi Iuchi ◽  
Akihisa Shinozawa ◽  
Izumi Yotsui ◽  
...  

Abstract Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screening for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L- but not S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2, and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1–1 mutants was similar to that of the wild type. Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the wild type. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1)—accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins—were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not bZIP28, resulting in initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER–Golgi vesicle tethering.


2006 ◽  
Vol 130 (4) ◽  
pp. 440-446
Author(s):  
Jaime Chavez ◽  
Hays W. J. Young ◽  
David B. Corry ◽  
Michael W. Lieberman

Abstract Context.—During an asthmatic episode, leukotriene C4 (LTC4) and interleukin 13 (IL-13) are released into the airways and are thought to be central mediators of the asthmatic response. However, little is known about how these molecules interact or affect each other's signaling pathway. Objective.—To determine if the LTC4 and IL-13 signaling pathways interact with each other's pathways. Design.—We examined airway responsiveness, cysteinyl LTs (Cys-LTs), and Cys-LT and IL-13 receptor transcript levels in wild-type mice and in mice that were deficient in γ-glutamyl leukotrienase (an enzyme that converts LTC4 to LTD4), STAT6 (signal transducer and activator of transcription 6 [a critical molecule in IL-13 signaling]), and IL-4Rα (a subunit of the IL-13 receptor). Results.—Wild-type (C57BL/129SvEv) and γ-glutamyl leukotrienase–deficient mice showed increased airway responsiveness after intranasal instillation of IL-13; similar results were observed after intranasal instillation of IL-13 or LTC4 in a second wild-type strain (BALB/c). Interleukin 13 treatment reduced levels of Cys-LTs in bronchoalveolar lavage fluid. This change was unaccompanied by changes in other arachidonic acid metabolites or in RNA transcript levels of enzymes associated with Cys-LT synthesis. Interleukin 13 treatment also increased transcript levels of the Cys-LT 1 and Cys-LT 2 receptors, while LTC4 increased transcript levels of the α1 chain of the IL-13 receptor. Furthermore, IL-4Rα–deficient mice had increased airway responsiveness to LTC4 but not to IL-13, whereas STAT6-deficient mice failed to respond to either agonist. Conclusions.—These findings indicate that LTC4 and IL-13 are dependent on or signal through STAT6 to increase airway responsiveness and that both agonists regulate expression of each other's receptors.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2589 ◽  
Author(s):  
Matthew Guberman-Pfeffer ◽  
José Gascón

Multichromophoric interactions control the initial events of energy capture and transfer in the light harvesting peridinin-chlorophyll a protein (PCP) from marine algae dinoflagellates. Due to the van der Waals association of the carotenoid peridinin (Per) with chlorophyll a in a unique 4:1 stoichiometric ratio, supramolecular quantum mechanical/molecular mechanical (QM/MM) calculations are essential to accurately describe structure, spectroscopy, and electronic coupling. We show that, by enabling inter-chromophore electronic coupling, substantial effects arise in the nature of the transition dipole moment and the absorption spectrum. We further hypothesize that inter-protein domain Per-Per interactions are not negligible, and are needed to explain the experimental reconstruction features of the spectrum in wild-type PCP.


2002 ◽  
Vol 22 (16) ◽  
pp. 5859-5868 ◽  
Author(s):  
Saugata Ray ◽  
Zemfira Karamysheva ◽  
Libin Wang ◽  
Dorothy E. Shippen ◽  
Carolyn M. Price

ABSTRACT In the ciliate Euplotes crassus, millions of new telomeres are synthesized by telomerase and polymerase α-primase during macronuclear development in mated cells. Concomitant with de novo telomere formation, telomerase assembles into higher-order complexes of 550 kDa, 1,600 kDa, and 5 MDa. We show here that telomerase is physically associated with the lagging-strand replication machinery in these complexes. Antibodies against DNA primase precipitated telomerase activity from all three complexes from mated cells but not the 280-kDa telomerase complex from vegetatively growing cells. Moreover, when telomerase was affinity purified, primase copurified with enzyme from mated cells but not with the 280-kDa vegetative complex. Thus, the association of telomerase and primase is developmentally regulated. Intriguingly, PCNA (proliferating cell nuclear antigen) was also found in the 5-MDa complex from mated cells. We therefore speculate that this complex is a complete telomere synthesis machine, while the smaller complexes are assembly intermediates. The physical association of telomerase and primase explains the coordinate regulation of telomeric G- and C-strand synthesis and the efficiency of telomere addition in E. crassus.


Epigenomics ◽  
2021 ◽  
Author(s):  
Sonal Saxena ◽  
Sumana Choudhury ◽  
Pranay Amruth Maroju ◽  
Anuhya Anne ◽  
Lov Kumar ◽  
...  

Aim: To study the effects of DNMT1 overexpression on transcript levels of genes dysregulated in schizophrenia and on genome-wide methylation patterns. Materials & methods: Transcriptome and DNA methylome comparisons were made between R1 (wild-type) and Dnmt1tet/tet mouse embryonic stem cells and neurons overexpressing DNMT1. Genes dysregulated in both Dnmt1tet/tet cells and schizophrenia patients were studied further. Results & conclusions: About 50% of dysregulated genes in patients also showed altered transcript levels in Tet/Tet neurons in a DNA methylation-independent manner. These neurons unexpectedly showed genome-wide hypomethylation, increased transcript levels of Tet1 and Apobec 1-3 genes and increased activity and copy number of LINE-1 elements. The observed similarities between Tet/Tet neurons and schizophrenia brain samples reinforce DNMT1 overexpression as a risk factor.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav9824 ◽  
Author(s):  
R. Filograna ◽  
C. Koolmeister ◽  
M. Upadhyay ◽  
A. Pajak ◽  
P. Clemente ◽  
...  

Heteroplasmic mtDNA mutations typically act in a recessive way and cause mitochondrial disease only if present above a certain threshold level. We have experimentally investigated to what extent the absolute levels of wild-type (WT) mtDNA influence disease manifestations by manipulating TFAM levels in mice with a heteroplasmic mtDNA mutation in the tRNAAla gene. Increase of total mtDNA levels ameliorated pathology in multiple tissues, although the levels of heteroplasmy remained the same. A reduction in mtDNA levels worsened the phenotype in postmitotic tissues, such as heart, whereas there was an unexpected beneficial effect in rapidly proliferating tissues, such as colon, because of enhanced clonal expansion and selective elimination of mutated mtDNA. The absolute levels of WT mtDNA are thus an important determinant of the pathological manifestations, suggesting that pharmacological or gene therapy approaches to selectively increase mtDNA copy number provide a potential treatment strategy for human mtDNA mutation disease.


2000 ◽  
Vol 381 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Jewad Shneine ◽  
Marc Voswinkel ◽  
Matthias Federwisch ◽  
Axel Wollmer

Abstract Structurally, the T→R transition of insulin mainly consists of a rearrangement of the N-terminal B-chain (residues B1–B8) from extended to helical in one or both of the trimers of the hexamer. The dependence of the transition on the nature of the ligands inducing it, such as inorganic anions or phenolic compounds, as well as of the metal ions complexing the hexamer, has been the subject of extensive investigations. This study explores the effect of helix-enhancing modifications of the N-terminal B-chain sequence where the transition actually occurs, with special emphasis on N-capping. In total 15 different analogues were prepared by semisynthesis. 80% of the hexamers of the most successful analogues with zinc were found to adopt the T3R3 state in the absence of any transforming ligands, as compared to only 4% of wild-type insulin. Transformation with SCN− ions can exceed the T3R3 state where it stops in the case of wild-type insulin. Full transformation to the R6 state can be achieved by only one-tenth the phenol concentration required for wild-type insulin, i. e. almost at the stoichiometric ratio of 6 phenols per hexamer.


1989 ◽  
Vol 9 (3) ◽  
pp. 1332-1335 ◽  
Author(s):  
M R Mowatt ◽  
G S Wisdom ◽  
C E Clayton

The procyclic acidic repetitive proteins (PARPs) of Trypanosoma brucei are developmentally regulated surface proteins encoded by a family of polymorphic genes. We have determined the complete nucleotide sequence of a novel member of the PARP gene family and investigated its expression. The amino acid sequence deduced from the parpA alpha gene showed a marked conservation of both the amino- and carboxy-terminal regions compared with other PARPs but revealed the substitution of a pentapeptide for the dipeptide repeating unit that is characteristic of all other PARPs. Northern hybridization analysis indicated that expression of the parpA alpha gene, like that of other members of this gene family, is confined to the procyclic stage of the T. brucei life cycle. This result implies coordinate regulation of the unlinked genetic loci that encode PARPs.


2006 ◽  
Vol 26 (18) ◽  
pp. 6762-6771 ◽  
Author(s):  
Martha L. Peterson ◽  
Gina L. Bingham ◽  
Clarissa Cowan

ABSTRACT The secretory-specific poly(A) signal (μs) of the immunoglobulin μ gene plays a central role in regulating alternative RNA processing to produce RNAs that encode membrane-associated and secreted immunoglobulins. This poly(A) signal is in direct competition with a splice reaction, and regulation requires that these two reaction efficiencies be balanced. The μs poly(A) signal has several unique sequence features that may contribute to its strength and regulation. Site-directed mutations and small internal deletions made in the intact μ gene show that an extensive AU/A-rich sequence surrounding AAUAAA enhances signal use and that, of the two potential downstream GU-rich elements, both of which appear suboptimally located, only the proximal GU-rich sequence contributes substantially to use of this signal. A GU-rich sequence placed at a more standard location did not improve μs poly(A) signal use. All μ genes tested that contained modified μs poly(A) signals were developmentally regulated, indicating that the GU-rich sequences, the sequences between them previously identified as suboptimal U1A binding sites, and an upstream suboptimal U1A site do not contribute to μ mRNA processing regulation. Expression of wild-type and modified μ genes in HeLa cells overexpressing U1A also failed to demonstrate that U1A contributes to μs poly(A) signal regulation.


Sign in / Sign up

Export Citation Format

Share Document