Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice

2006 ◽  
Vol 291 (5) ◽  
pp. L896-L904 ◽  
Author(s):  
Madhav Bhatia ◽  
Liang Zhi ◽  
Huili Zhang ◽  
Siaw-Wei Ng ◽  
Philip K. Moore

We have shown earlier that H2S acts as a mediator of inflammation. In this study, we have investigated the involvement of substance P and neurogenic inflammation in H2S-induced lung inflammation. Intraperitoneal administration of NaHS (1–10 mg/kg), an H2S donor, to mice caused a significant increase in circulating levels of substance P in a dose-dependent manner. H2S alone could also cause lung inflammation, as evidenced by a significant increase in lung myeloperoxidase activity and histological evidence of lung injury. The maximum effect of H2S on substance P levels and on lung inflammation was observed 1 h after NaHS administration. At this time, a significant increase in lung levels of TNF-α and IL-1β was also observed. In substance P-deficient mice, the preprotachykinin-A knockout mice, H2S did not cause any lung inflammation. Furthermore, pretreatment of mice with CP-96345 (2.5 mg/kg ip), an antagonist of the neurokinin-1 (NK1) receptor, protected mice against lung inflammation caused by H2S. However, treatment with antagonists of NK2, NK3, and CGRP receptors did not have any effect on H2S-induced lung inflammation. Depleting neuropeptide from sensory neurons by capsaicin (50 mg/kg sc) significantly reduced the lung inflammation caused by H2S. In addition, pretreatment of mice with capsazepine (15 mg/kg sc), an antagonist of the transient receptor potential vanilloid-1, protected mice against H2S-induced lung inflammation. These results demonstrate a key role of substance P and neurogenic inflammation in H2S-induced lung injury in mice.

2019 ◽  
Vol 11 (16) ◽  
pp. 2081-2094 ◽  
Author(s):  
Tingting Guo ◽  
Zhenzhong Su ◽  
Qi Wang ◽  
Wei Hou ◽  
Junyao Li ◽  
...  

Aim: Thus far, the anti-inflammatory effect of vanillin in acute lung injury (ALI) has not been studied. This study aimed to investigate the effect of vanillin in lipopolysaccharide (LPS)-induced ALI. Results & methodology: Our study detected the anti-inflammatory effects of vanillin by ELISA and western blot, respectively. Pretreatment of mice with vanillin significantly attenuated LPS-stimulated lung histopathological changes, myeloperoxidase activity and expression levels of proinflammatory cytokines by inhibiting the phosphorylation activities of ERK1/2, p38, AKT and NF-κB p65. In addition, vanillin inhibited LPS-induced TNF-α and IL-6 expression in RAW264.7 cells via ERK1/2, p38 and NF-κB signaling. Conclusion: Vanillin can inhibit macrophage activation and lung inflammation, which suggests new insights for clinical treatment of ALI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Duncan C. Humphries ◽  
Ross Mills ◽  
Ross Dobie ◽  
Neil C. Henderson ◽  
Tariq Sethi ◽  
...  

Rationale: Galectin-3 (Gal-3) is an immune regulator and an important driver of fibrosis in chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Previous work has shown that global deletion of galectin-3 reduces collagen deposition in a bleomycin-induced pulmonary fibrosis model (MacKinnon et al., Am. J. Respir. Crit. Care Med., 2012, 185, 537–46). An inhaled Gal-3 inhibitor, GB0139, is undergoing Phase II clinical development for idiopathic pulmonary fibrosis (IPF). This work aims to elucidate the role of Gal-3 in the myeloid and mesenchymal compartment on the development of acute and chronic lung injury.Methods:LgalS3fl/fl mice were generated and crossed with mice expressing the myeloid (LysM) and mesenchymal (Pdgfrb) cre drivers to yield LysM-cre+/-/LgalS3fl/fl and Pdgfrb-cre+/-/LgalS3fl/fl mice. The response to acute (bleomycin or LPS) or chronic (bleomycin) lung injury was compared to globally deficient Gal-3−/− mice.Results: Myeloid depletion of Gal-3 led to a significant reduction in Gal-3 expression in alveolar macrophages and neutrophils and a reduction in neutrophil recruitment into the interstitium but not into the alveolar space. The reduction in interstitial neutrophils corelated with decreased levels of pulmonary inflammation following acute bleomycin and LPS administration. In addition, myeloid deletion decreased Gal-3 levels in bronchoalveolar lavage (BAL) and reduced lung fibrosis induced by chronic bleomycin. In contrast, no differences in BAL Gal-3 levels or fibrosis were observed in Pdgfrb-cre+/-/LgalS3fl/flmice.Conclusions: Myeloid cell derived Galectin-3 drives acute and chronic lung inflammation and supports direct targeting of galectin-3 as an attractive new therapy for lung inflammation.


2021 ◽  
Author(s):  
Jinju Li ◽  
Rongge Shao ◽  
Qiuwen Xie ◽  
XueKe Du

Abstract Purpose:Ulinastatin (UTI) is an endogenous protease inhibitor with potent anti-inflammatory, antioxidant and organ protective effects. The inhibitor has been reported to ameliorate inflammatory lung injury but precise mechanisms remain unclear. Methods: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). The number of neutrophils and the phagocytosis of apoptotic neutrophils were observed by Diff- Quick method. Lung injury was observed by HE staining .BALF cells were counted by hemocytometer and concentrations of protein plus inflammatory factors were measured with a BCA test kit. During in vitro experiments, RAW264.7 cells were pretreated with UTI (1000 and 5000U/ mL), stained with CellTrackerTM Green B0DIPYTM and HL60 cells added with UV-induced apoptosis and PKH26 Red staining. The expression of ERK5\Mer related proteins was detected by western blot and immunofluorescence.Results: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). UTI treatment enhanced the phagocytotic effect of mouse alveolar macrophages on neutrophils, alleviated lung lesions, decreased the pro-inflammatory factor and total protein content of BALF and increased levels of anti-inflammatory factors. in vitro experiments ,UTI enhanced the phagocytosis of apoptotic bodies by RAW264.7 cells in a dose-dependent manner. Increased expression levels of ERK5 and Mer by UTI were shown by Western blotting and immunofluorescence.Conclusions: UTI mediated the activation of the ERK5/Mer signaling pathway, enhanced phagocytosis of neutrophils by macrophages and improved lung inflammation. The current study indicates potential new clinical approaches for accelerating the recovery from lung inflammation.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Shuiqiao Fu ◽  
Weina Lu ◽  
Wenqiao Yu ◽  
Jun Hu

Abstract Background: To study the protective effect of Cordyceps sinensis extract (Dong Chong Xia Cao in Chinese [DCXC]) on experimental acute lung injury (ALI) mice. Methods and results: ALI model was induced by intratracheal-instilled lipopolysaccharide (LPS, 2.4 mg/kg) in BALB/c male mice. The mice were administrated DCXC (ig, 10, 30, 60 mg/kg) in 4 and 8 h after receiving LPS. Histopathological section, wet/dry lung weight ratio and myeloperoxidase activity were detected. Bronchoalveolar lavage fluid (BALF) was collected for cell count, the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and nitric oxide (NO) in BALF was detected by ELISA, the protein and mRNA expression of nuclear factor-κB p65 (NF-κB p65), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissue was detected by Western blot and RT-PCR. The result showed that DCXC could reduce the degree of histopathological injury, wet/dry weight ratio (W/D ratio) and myeloperoxidase activity (P<0.05) with a dose-dependent manner. The increased number of total cells, neutrophils and macrophages in BALF were significantly inhibited by DCXC treatment (P<0.05). The increased levels of TNF-α, IL-1β, IL-6 and NO in BALF after LPS administration was significantly reduced by DCXC (P<0.05). In addition, the increased protein and mRNA levels of iNOS, COX-2 and NF-κB p65 DNA binding ability in LPS group were dose-dependently reduced by DCXC treatment (P<0.05). Conclusion: DCXC could play an anti-inflammatory and antioxidant effect on LPS-induced ALI through inhibiting NF-κB p65 phosphorylation, and the expression of COX-2 and iNOS in lung. The result showed that DCXC has a potential protective effect on the ALI.


1997 ◽  
Vol 92 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Masanari Shiramoto ◽  
Tsutomu Imaizumi ◽  
Yoshitaka Hirooka ◽  
Toyonari Endo ◽  
Takashi Namba ◽  
...  

1. It has been shown in animals that substance P as well as acetylcholine releases endothelium-derived nitric oxide and evokes vasodilatation and that ATP-induced vasodilatation is partially mediated by nitric oxide. The aim of this study was to examine whether vasodilator effects of substance P and ATP are mediated by nitric oxide in humans. 2. In healthy volunteers (n = 35), we measured forearm blood flow by a strain-gauge plethysmograph while infusing graded doses of acetylcholine, substance P, ATP or sodium nitroprusside into the brachial artery before and after infusion of NG-monomethyl-l-arginine (4 or 8 μmol/min for 5 min). In addition, we measured forearm blood flow while infusing substance P before and during infusion of l-arginine (10 mg/min, simultaneously), or before and 1 h after oral administration of indomethacin (75 mg). 3. Acetylcholine, substance P, ATP or sodium nitroprusside increased forearm blood flow in a dose-dependent manner. NG-Monomethyl-l-arginine decreased basal forearm blood flow and inhibited acetylcholine-induced vasodilatation but did not affect substance P-, ATP-, or sodium nitroprusside-induced vasodilatation. Neither supplementation of l-arginine nor pretreatment with indomethacin affected substance P-induced vasodilatation. 4. Our results suggest that, in the human forearm vessels, substance P-induced vasodilatation may not be mediated by either nitric oxide or prostaglandins and that ATP-induced vasodilatation may also not be mediated by nitric oxide.


2009 ◽  
Vol 421 (3) ◽  
pp. 405-413 ◽  
Author(s):  
Joydip Das ◽  
Satyabrata Pany ◽  
Ghazi M. Rahman ◽  
Simon J. Slater

Alcohols regulate the expression and function of PKC (protein kinase C), and it has been proposed that an alcohol-binding site is present in PKCα in its C1 domain, which consists of two cysteine-rich subdomains, C1A and C1B. A PKCϵ-knockout mouse showed a significant decrease in alcohol consumption compared with the wild-type. The aim of the present study was to investigate whether an alcohol-binding site could be present in PKCϵ. Here we show that ethanol inhibited PKCϵ activity in a concentration-dependent manner with an EC50 (equilibrium ligand concentration at half-maximum effect) of 43 mM. Ethanol, butanol and octanol increased the binding affinity of a fluorescent phorbol ester SAPD (sapintoxin-D) to PKCϵC1B in a concentration-dependent manner with EC50 values of 78 mM, 8 mM and 340 μM respectively, suggesting the presence of an allosteric alcohol-binding site in this subdomain. To identify this site, PKCϵC1B was photolabelled with 3-azibutanol and 3-azioctanol and analysed by MS. Whereas azibutanol preferentially labelled His236, Tyr238 was the preferred site for azioctanol. Inspection of the model structure of PKCϵC1B reveals that these residues are 3.46 Å (1 Å=0.1 nm) apart from each other and form a groove where His236 is surface-exposed and Tyr238 is buried inside. When these residues were replaced by alanine, it significantly decreased alcohol binding in terms of both photolabelling and alcohol-induced SAPD binding in the mutant H236A/Y238A. Whereas Tyr238 was labelled in mutant H236A, His236 was labelled in mutant Y238A. The present results provide direct evidence for the presence of an allosteric alcohol-binding site on protein kinase Cϵ and underscore the role of His236 and Tyr238 residues in alcohol binding.


2016 ◽  
Vol 311 (3) ◽  
pp. L664-L675 ◽  
Author(s):  
Clémence O. Henry ◽  
Emilie Dalloneau ◽  
Maria-Teresa Pérez-Berezo ◽  
Cristina Plata ◽  
Yongzheng Wu ◽  
...  

Cystic fibrosis (CF) is an inherited disease associated with chronic severe lung inflammation, leading to premature death. To develop innovative anti-inflammatory treatments, we need to characterize new cellular and molecular components contributing to the mechanisms of lung inflammation. Here, we focused on the potential role of “transient receptor potential vanilloid-4” (TRPV4), a nonselective calcium channel. We used both in vitro and in vivo approaches to demonstrate that TRPV4 expressed in airway epithelial cells triggers the secretion of major proinflammatory mediators such as chemokines and biologically active lipids, as well as a neutrophil recruitment in lung tissues. We characterized the contribution of cytosolic phospholipase A2, MAPKs, and NF-κB in TRPV4-dependent signaling. We also showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids, i.e., four natural lipid-based TRPV4 agonists, are present in expectorations of CF patients. Also, TRPV4-induced calcium mobilization and inflammatory responses were enhanced in cystic fibrosis transmembrane conductance regulator-deficient cellular and animal models, suggesting that TRPV4 is a promising target for the development of new anti-inflammatory treatments for diseases such as CF.


1993 ◽  
Vol 28 (3) ◽  
pp. 191-196 ◽  
Author(s):  
A. Gyorfi ◽  
A. Fazekas ◽  
F. Irmes ◽  
G. Jakab ◽  
T. Suto ◽  
...  

2018 ◽  
Vol 315 (5) ◽  
pp. L775-L786 ◽  
Author(s):  
Xue Zhang ◽  
Tao Wang ◽  
Zhi-Cheng Yuan ◽  
Lu-Qi Dai ◽  
Ni Zeng ◽  
...  

Acute lung injury (ALI) is characterized by alveolar epithelial damage and uncontrolled pulmonary inflammation. Mitochondrial damage-associated molecular patterns (DAMPs), including mitochondrial peptides [ N-formyl peptides (NFPs)], are released during cell injury and death and induce inflammation by unclear mechanisms. In this study, we have investigated the role of mitochondrial DAMPs (MTDs), especially NFPs, in alveolar epithelial injury and lung inflammation. In murine models of ALI, high levels of mitochondrial NADH dehydrogenase 1 in bronchoalveolar lavage fluid (BALF) were associated with lung injury scores and increased formyl peptide receptor (FPR)-1 expression in the alveolar epithelium. Cyclosporin H (CsH), a specific inhibitor of FPR1, inhibited lung inflammation in the ALI models. Both MTDs and NFPs upon intratracheal challenge caused accumulation of neutrophils into the alveolar space with elevated BALF levels of mouse chemokine KC, interleukin-1β, and nitric oxide and increased pulmonary FPR-1 levels. CsH significantly attenuated MTDs or NFP-induced inflammatory lung injury and activation of MAPK and AKT pathways. FPR1 expression was present in rat primary alveolar epithelial type II cells (AECIIs) and was increased by MTDs. CsH inhibited MTDs or NFP-induced CINC-1/IL-8 release and phosphorylation of p38, JNK, and AKT in rat AECII and human cell line A549. Inhibitors of MAPKs and AKT also suppressed MTD-induced IL-8 release and NF-κB activation. Collectively, our data indicate an important role of the alveolar epithelium in initiating immune responses to MTDs released during ALI. The potential mechanism may involve increase of IL-8 production in MTD-activated AECII through FPR-1 and its downstream MAPKs, AKT, and NF-κB pathways.


Sign in / Sign up

Export Citation Format

Share Document