scholarly journals Cooperative effects of rhinovirus and TNF-α on airway epithelial cell chemokine expression

2007 ◽  
Vol 293 (4) ◽  
pp. L1021-L1028 ◽  
Author(s):  
Dawn C. Newcomb ◽  
Umadevi S. Sajjan ◽  
Deepti R. Nagarkar ◽  
Adam M. Goldsmith ◽  
J. Kelley Bentley ◽  
...  

Rhinovirus (RV) infections trigger exacerbations of airways disease, but underlying mechanisms remain unknown. We hypothesized that RV and cytokines present in inflamed airways combine to induce augmented airway epithelial cell chemokine expression, promoting further inflammation. To test this hypothesis in a cellular system, we examined the combined effects of RV39 and TNF-α, a cytokine increased in asthma and chronic obstructive pulmonary disease, on airway epithelial cell proinflammatory gene expression. Costimulation of 16HBE14o- human bronchial epithelial cells and primary mucociliary-differentiated tracheal epithelial cells with RV and TNF-α induced synergistic increases in IL-8 and epithelial neutrophil attractant-78 production. Similar synergism was observed for IL-8 promoter activity, demonstrating that the effect is transcriptionally mediated. Whereas increases in ICAM-1 expression and viral load were noted 16–24 h after costimulation, cooperative effects between RV39 and TNF-α were evident 4 h after stimulation and maintained despite incubation with blocking antibody to ICAM-1 given 2 h postinfection or UV irradiation of virus, implying that effects were not solely due to changes in ICAM-1 expression. Furthermore, RV39 infection induced phosphorylation of ERK and transactivation of the IL-8 promoter AP-1 site, which functions as a basal level enhancer, leading to enhanced TNF-α responses. We conclude that RV infection and TNF-α stimulation induce cooperative increases in epithelial cell chemokine expression, providing a cellular mechanism for RV-induced exacerbations of airways disease.

2007 ◽  
Vol 292 (4) ◽  
pp. L852-L860 ◽  
Author(s):  
David A. Stoltz ◽  
Egon A. Ozer ◽  
Carey J. Ng ◽  
Janet M. Yu ◽  
Srinivasa T. Reddy ◽  
...  

Pseudomonas aeruginosa is an important cause of nosocomial infections and is frequently present in the airways of cystic fibrosis patients. Quorum sensing mediates P. aeruginosa's virulence and biofilm formation through density-dependent interbacterial signaling with autoinducers. N-3-oxododecanoyl homoserine lactone (3OC12-HSL) is the major autoinducer in P. aeruginosa. We have previously shown that human airway epithelia and paraoxonases (PONs) degrade 3OC12-HSL. This study investigated the role of PON1, PON2, and PON3 in airway epithelial cell inactivation of 3OC12-HSL. All three PONs were present in murine tracheal epithelial cells, with PON2 and PON3 expressed at the highest levels. Lysates of tracheal epithelial cells from PON2, but not PON1 or PON3, knockout mice had impaired 3OC12-HSL inactivation compared with wild-type mice. In contrast, PON1-, PON2-, or PON3-targeted deletions did not affect 3OC12-HSL degradation by intact epithelia. Overexpression of PON2 enhanced 3OC12-HSL degradation by human airway epithelial cell lysates but not by intact epithelia. Finally, using a quorum-sensing reporter strain of P. aeruginosa, we found that quorum sensing was enhanced in PON2-deficient airway epithelia. In summary, these results show that loss of PON2 impairs 3OC12-HSL degradation by airway epithelial cells and suggests that diffusion of 3OC12-HSL into the airway cells can be the rate-limiting step for degradation of the molecule.


2002 ◽  
Vol 283 (6) ◽  
pp. L1315-L1321 ◽  
Author(s):  
Yingjian You ◽  
Edward J. Richer ◽  
Tao Huang ◽  
Steven L. Brody

Highly regulated programs for airway epithelial cell proliferation and differentiation during development and repair are often disrupted in disease. These processes have been studied in mouse models; however, it is difficult to isolate and identify epithelial cell-specific responses in vivo. To investigate these processes in vitro, we characterized a model for primary culture of mouse tracheal epithelial cells. Small numbers of cells seeded at low density (7.5 × 104 cells/cm2) rapidly proliferated and became polarized. Subsequently, supplemented media and air-liquid interface conditions resulted in development of highly differentiated epithelia composed of ciliated and nonciliated cells with gene expression characteristic of native airways. Genetically altered or injured mouse tracheal epithelial cells also reflected in vivo patterns of airway epithelial cell gene expression. Passage of cells resulted in continued proliferation but limited differentiation after the first passage, suggesting that transit-amplifying cell populations were present but with independent programs for proliferation and differentiation. This approach provides a high-fidelity in vitro model for evaluation of gene regulation and expression in mouse airway epithelial cells.


2022 ◽  
Author(s):  
Min-yan Li ◽  
Yan-qin Qin ◽  
Jian-sheng Li ◽  
Peng Zhao ◽  
Yan-ge Tian ◽  
...  

Abstract Background: Effective-component compatibility of Bufei Yishen formula Ⅲ (ECC-BYF Ⅲ) shows positive effects on stable chronic obstructive pulmonary disease (COPD).Purpose: To investigate the mechanisms of ECC-BYF Ⅲ on COPD rats from the aspect of airway epithelial cell senescence.Methods: COPD model rats were treated with ECC-BYF Ⅲ for 8 weeks and the efficacy was evaluated. Cigarette smoke extract (CSE) induced senescence model of airway epithelial cells were treated with ECC-BYF Ⅲ, the related enzymes and proteins involved in oxidative stress and mitophagy were detected.Results: ECC-BYF Ⅲ markedly rescued pulmonary function and histopathological changes, which might be associated with the amelioration of lung senescence, including reduction of malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and matrix metalloproteinase (MMP)-9, increase of the level of total superoxide dismutase (T-SOD), and decease of p21 level in airway. Furthermore, ECC-BYF Ⅲ suppressed p16, p21 expressions and senescence-associated β-galactosidase (SA-β-Gal) in CSE-induced airway epithelial cells. Moreover, ECC-BYF Ⅲ upregulated the mitophagy-related proteins, including co-localization of TOM20 and LC3B, PINK1, PARK2, and improved mitochondrial function with upregulating mitochondrial mitofusin (Mfn)2 and reducing dynamin-related protein 1 (Drp1) expression. ECC-BYF Ⅲ enhanced the activities of T-SOD and GSH-PX by up-regulating Nrf2, thus inhibiting oxidative stress. After intervention with Nrf2 inhibitor, the regulation effects of ECC-BYF Ⅲ on oxidative stress, mitophagy and senescence in airway epithelial cells were significantly suppressed.Conclusions: ECC-BYF Ⅲ exerts beneficial effects on COPD rats by ameliorating airway epithelial cell senescence, which is mediated by inhibiting oxidative stress and subsequently enhancing mitophagy through activation of Nrf2 signaling.


2020 ◽  
Vol 55 (6) ◽  
pp. 1901200 ◽  
Author(s):  
Nick J.I. Hamilton ◽  
Dani Do Hyang Lee ◽  
Kate H.C. Gowers ◽  
Colin R. Butler ◽  
Elizabeth F. Maughan ◽  
...  

Current methods to replace damaged upper airway epithelium with exogenous cells are limited. Existing strategies use grafts that lack mucociliary function, leading to infection and the retention of secretions and keratin debris. Strategies that regenerate airway epithelium with mucociliary function are clearly desirable and would enable new treatments for complex airway disease.Here, we investigated the influence of the extracellular matrix (ECM) on airway epithelial cell adherence, proliferation and mucociliary function in the context of bioengineered mucosal grafts. In vitro, primary human bronchial epithelial cells (HBECs) adhered most readily to collagen IV. Biological, biomimetic and synthetic scaffolds were compared in terms of their ECM protein content and airway epithelial cell adherence.Collagen IV and laminin were preserved on the surface of decellularised dermis and epithelial cell attachment to decellularised dermis was greater than to the biomimetic or synthetic alternatives tested. Blocking epithelial integrin α2 led to decreased adherence to collagen IV and to decellularised dermis scaffolds. At air–liquid interface (ALI), bronchial epithelial cells cultured on decellularised dermis scaffolds formed a differentiated respiratory epithelium with mucociliary function. Using in vivo chick chorioallantoic membrane (CAM), rabbit airway and immunocompromised mouse models, we showed short-term preservation of the cell layer following transplantation.Our results demonstrate the feasibility of generating HBEC grafts on clinically applicable decellularised dermis scaffolds and identify matrix proteins and integrins important for this process. The long-term survivability of pre-differentiated epithelia and the relative merits of this approach against transplanting basal cells should be assessed further in pre-clinical airway transplantation models.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joao Gimenes-Junior ◽  
Nicole Owuar ◽  
Hymavathi Reddy Vari ◽  
Wuyan Li ◽  
Nathaniel Xander ◽  
...  

AbstractForkhead transcription factor class O (FOXO)3a, which plays a critical role in a wide variety of cellular processes, was also found to regulate cell-type-specific antiviral responses. Airway epithelial cells express FOXO3a and play an important role in clearing rhinovirus (RV) by mounting antiviral type I and type III interferon (IFN) responses. To elucidate the role of FOXO3a in regulating antiviral responses, we generated airway epithelial cell-specific Foxo3a knockout (Scga1b1-Foxo3a−/−) mice and a stable FOXO3a knockout human airway epithelial cell line. Compared to wild-type, Scga1b1-Foxo3a−/− mice show reduced IFN-α, IFN-β, IFN-λ2/3 in response to challenge with RV or double-stranded (ds)RNA mimic, Poly Inosinic-polycytidylic acid (Poly I:C) indicating defective dsRNA receptor signaling. RV-infected Scga1b1-Foxo3a−/− mice also show viral persistence, enhanced lung inflammation and elevated pro-inflammatory cytokine levels. FOXO3a K/O airway epithelial cells show attenuated IFN responses to RV infection and this was associated with conformational change in mitochondrial antiviral signaling protein (MAVS) but not with a reduction in the expression of dsRNA receptors under unstimulated conditions. Pretreatment with MitoTEMPO, a mitochondrial-specific antioxidant corrects MAVS conformation and restores antiviral IFN responses to subsequent RV infection in FOXO3a K/O cells. Inhibition of oxidative stress also reduces pro-inflammatory cytokine responses to RV in FOXO3a K/O cells. Together, our results indicate that FOXO3a plays a critical role in regulating antiviral responses as well as limiting pro-inflammatory cytokine expression. Based on these results, we conclude that FOXO3a contributes to optimal viral clearance and prevents excessive lung inflammation following RV infection.


Sign in / Sign up

Export Citation Format

Share Document