Involvement of protein tyrosine kinase in Toll-like receptor 4-mediated NF-κB activation in human peripheral blood monocytes

2003 ◽  
Vol 284 (4) ◽  
pp. L607-L613 ◽  
Author(s):  
Ling-Yu Chen ◽  
Bruce L. Zuraw ◽  
Ming Zhao ◽  
Fu-Tong Liu ◽  
Shuang Huang ◽  
...  

Bacterial lipopolysaccharide (LPS) is a powerful activator of the innate immune system. Exposure to LPS induces an inflammatory reaction in the lung mediated primarily by human blood monocytes and alveolar macrophages, which release an array of inflammatory chemokines and cytokines including IL-8, TNF-α, IL-1β, and IL-6. The signaling mechanisms utilized by LPS to stimulate the release of cytokines and chemokines are still incompletely understood. Pretreatment with the protein tyrosine kinase-specific inhibitors genistein and herbimycin A effectively blocked LPS-induced NF-κB activation as well as IL-8 gene expression in human peripheral blood monocytes. However, when genistein was added 2 min after the addition of LPS, no inhibition was observed. Utilizing a coimmunoprecipitation assay, we further showed that LPS-stimulated tyrosine phosphorylation of Toll-like receptor 4 (TLR4) may be involved in downstream signaling events induced by LPS. These findings provide evidence that LPS-induced NF-κB activation and IL-8 gene expression use a signaling pathway requiring protein tyrosine kinase and that such regulation may occur through tyrosine phosphorylation of TLR4.

1994 ◽  
Vol 72 (06) ◽  
pp. 937-941 ◽  
Author(s):  
Karim Rezaul ◽  
Shigeru Yanagi ◽  
Kiyonao Sada ◽  
Takanobu Taniguchi ◽  
Hirohei Yamamura

SummaryIt has been demonstrated that activation of platelets by platelet-activating factor (PAF) results in a dramatic increase in tyrosine phosphorylation of several cellular proteins. We report here that p72 syk is a potential candidate for the protein-tyrosine phosphorylation following PAF stimulation in porcine platelets. Immunoprecipitation kinase assay revealed that PAF stimulation resulted in a rapid activation of p72 syk which peaked at 10 s. The level of activation was found to be dose dependent and could be completely inhibited by the PAF receptor antagonist, CV3988. Phosphorylation at the tyrosine residues of p72 syk coincided with activation of yllsyk. Pretreatment of platelets with aspirin and apyrase did not affect PAF induced activation of p72 syk .Furthermore, genistein, a potent protein-tyrosine-kinase inhibitor, diminished PAF-induced p72 syk activation and Ca2+ mobilization as well as platelet aggregation. These results suggest that p72 syk may play a critical role in PAF-induced aggregation, possibly through regulation of Ca2+ mobilization.


1992 ◽  
Vol 12 (10) ◽  
pp. 4706-4713
Author(s):  
H Sabe ◽  
M Okada ◽  
H Nakagawa ◽  
H Hanafusa

The protein product of the CT10 virus, p47gag-crk (v-Crk), which contains Src homology region 2 (SH2) and 3 (SH3) domains but lacks a kinase domain, is believed to cause an increase in cellular protein tyrosine phosphorylation. A candidate tyrosine kinase, Csk (C-terminal Src kinase), has been implicated in c-Src Tyr-527 phosphorylation, which negatively regulates the protein tyrosine kinase of pp60c-src (c-Src). To investigate how c-Src kinase activity is regulated in vivo, we first looked at whether v-Crk can activate c-Src kinase. We found that cooverexpression of v-Crk and c-Src caused elevation of c-Src kinase activity, resulting in an increase of tyrosine phosphorylation of cellular proteins and morphological transformation of rat 3Y1 fibroblasts. v-Crk and c-Src complexes were not detected, although v-Crk bound to a variety of tyrosine-phosphorylated proteins in cells overexpressing v-Crk and c-Src. Overexpression of Csk in these transformed cells caused reversion to normal phenotypes and also reduced the level of c-Src kinase activity. However, Csk did not cause reversion of cells transformed by v-Src or c-Src527F, in which Tyr-527 was changed to Phe. These results strongly suggest that Csk acts on Tyr-527 of c-Src and suppresses c-Src kinase activity in vivo. Because Csk can suppress transformation by cooverexpression of v-Crk and c-Src, we suggest that v-Crk causes activation of c-Src in vivo by altering the phosphorylation state of Tyr-527.


1993 ◽  
Vol 13 (2) ◽  
pp. 785-791
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


1996 ◽  
Vol 109 (3) ◽  
pp. 699-704 ◽  
Author(s):  
M. Cervello ◽  
V. Matranga ◽  
P. Durbec ◽  
G. Rougon ◽  
S. Gomez

The glycosyl-phosphatidylinositol (GPI)-anchored F3 molecule, a member of the Ig superfamily made up of Ig and FNIII-like domains, is involved in cell-cell adhesion, neuronal pathfinding and fasciculation. Little is known about the mechanism(s) that governs the F3-mediated cell-cell recognition. In particular, it is not known whether F3 transduces signals across the membrane. Here we show that in F3-transfected CHO cells (1A cells) an increase in tyrosine phosphorylation occurs during F3-mediated aggregation. Moreover, under aggregation conditions F3 immunoprecipitated from 32P-metabolically labeled 1A cells associated with three major phosphorylated proteins. Interestingly, genistein inhibited the F3-mediated aggregation. Increased tyrosine phosphorylation was also observed using antibody-mediated F3-cross-linking. Furthermore, F3 expressed both in 1A cells and in post-natal mouse cerebellum forms non-covalent soluble complexes with protein tyrosine kinase(s). In cerebellum the F3-associated kinase was identified as fyn. By contrast, a truncated F3 protein, expressed in CHO cells, from which all the FN type III repeats have been deleted, does not associate with a kinase. Cross-linking of the F3-truncated form does not induce modulation of tyrosine phosphorylation. Taken together these data demonstrate that F3 is a molecule that transduces signals through both association with protein tyrosine kinase and modulation of protein tyrosine phosphorylation. The presence of FN type III domains is essential for the activation of the intracellular signaling pathway.


1995 ◽  
Vol 15 (2) ◽  
pp. 835-842 ◽  
Author(s):  
Y Maru ◽  
K L Peters ◽  
D E Afar ◽  
M Shibuya ◽  
O N Witte ◽  
...  

The human bcr gene encodes a protein with serine/threonine kinase activity, CDC24/dbl homology, a GAP domain, and an SH2-binding region. However, the precise physiological functions of BCR are unknown. Coexpression of BCR with the cytoplasmic protein-tyrosine kinase encoded by the c-fes proto-oncogene in Sf-9 cells resulted in stable BCR-FES protein complex formation and tyrosine phosphorylation of BCR. Association involves the SH2 domain of FES and a novel binding domain localized to the first 347 amino acids of the FES N-terminal region. Deletion of the homologous N-terminal BCR-binding domain from v-fps, a fes-related transforming oncogene, abolished transforming activity and tyrosine phosphorylation of BCR in vivo. Tyrosine phosphorylation of BCR in v-fps-transformed cells induced its association with GRB-2/SOS, the RAS guanine nucleotide exchange factor complex. These data provide evidence that BCR couples the cytoplasmic protein-tyrosine kinase and RAS signaling pathways.


1996 ◽  
Vol 184 (1) ◽  
pp. 71-79 ◽  
Author(s):  
J Zhang ◽  
E H Berenstein ◽  
R L Evans ◽  
R P Siraganian

Aggregation of the high affinity receptor for immunoglobulin E (Fc epsilon RI) on mast cells results in rapid tyrosine phosphorylation and activation of Syk, a cytoplasmic protein tyrosine kinase. To examine the role of Syk in the Fc epsilon RI signaling pathway, we identified a variant of RBL-2H3 cells that has no detectable Syk by immunoblotting and by in vitro kinase reactions. In these Syk-deficient TB1A2 cells, aggregation of Fc epsilon RI induced no histamine release and no detectable increase in total cellular protein tyrosine phosphorylation. However, stimulation of these cells with the calcium ionophore did induce degranulation. Fc epsilon RI aggregation induced tyrosine phosphorylation of the beta and gamma subunits of the receptor, but no increase in the tyrosine phosphorylation of phospholipase C-gamma 1 and phospholipase C-gamma 2 and no detectable increase in intracellular free Ca2+ concentration. By transfection, cloned lines were established with stable expression of Syk. In these reconstituted cells, Fc epsilon RI aggregation induced tyrosine phosphorylation of phospholipase C-gamma 1 and phospholipase C-gamma 2, an increase in intracellular free Ca2+ and histamine release. These results demonstrate that Syk plays a critical role in the early Fc epsilon RI-mediated signaling events. It further demonstrates that Syk activation occurs downstream of receptor phosphorylation, but upstream of most of the Fc epsilon RI-mediated protein tyrosine phosphorylations.


Sign in / Sign up

Export Citation Format

Share Document