scholarly journals Co-stimulation of T cells with CD2 augments TCR-CD3-mediated activation of protein tyrosine kinase p72syk, resulting in increased tyrosine phosphorylation of adapter proteins, Shc and Cbl

1998 ◽  
Vol 10 (6) ◽  
pp. 833-845 ◽  
Author(s):  
H Umehara
1992 ◽  
Vol 176 (6) ◽  
pp. 1745-1750 ◽  
Author(s):  
L Azzoni ◽  
M Kamoun ◽  
T W Salcedo ◽  
P Kanakaraj ◽  
B Perussia

Binding of ligand to the alpha subunit of Fc gamma RIIIA(CD16), expressed at the natural killer (NK) cell membrane in association with homo or heterodimers of proteins of the zeta family, results in phosphorylation of several proteins on tyrosine residues. We have analyzed the role of protein tyrosine phosphorylation in the regulation of molecular events induced upon stimulation of Fc gamma RIIIA in NK cells and in T cells expressing the Fc gamma RIII alpha chain in association with endogenous zeta 2 homodimers and devoid of other (CD3, CD2) transducing molecules. Our data indicate that treatment of these cells with protein tyrosine kinase inhibitors prevents not only Fc gamma RIIIA-induced protein tyrosine phosphorylation but also phosphatidylinositol 4,5 diphosphate hydrolysis and increased intracellular Ca2+ concentration, indicating a primary role of tyrosine kinase(s) in the induction of these early activation events. Occupancy of Fc gamma RIIIA by ligand results in phospholipase C (PLC)-gamma 1 tyrosine phosphorylation in NK cells and in Fc gamma RIIIA-transfected CD3-/CD2- T cells, and induces functional activation of p56lck in Fc gamma RIIIA alpha/zeta 2-transfected T cells, suggesting the possibility that the receptor-induced PLC-gamma 1 activation occurs upon phosphorylation of its tyrosine residues mediated by this kinase and is, at least in part, responsible for the signal transduction mediated via CD16 upon ligand binding.


Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2077-2085 ◽  
Author(s):  
N Sharfe ◽  
HK Dadi ◽  
CM Roifman

The interleukin-7 (IL-7) receptor is expressed throughout T-cell differentiation and, although lacking a tyrosine kinase domain, mediates tyrosine phosphorylation in T cells. We have identified IL-7- induced activation of three cyoplasmic tyrosine kinases in T cells, Jak1, Jak3, and the src-like kinase p56lck. Many members of the cytokine receptor superfamily activate the Jak protein tyrosine kinase family, with resultant phosphorylation of the Stat transcriptional activator factors. We describe here a novel function of the Jak kinases, because Jak kinase activity is not only required for Stat activation but also for P13 kinase response to IL-7 in human T cells. We show that IL-7 receptor-mediated Jak activation can occur independently of p56lck activity. IL-7-induced P13 kinase activation, mediated by tyrosine phosphorylation of the P13 kinase p85 subunit, is essential to the IL-7 proliferative signal and also occurs in the absence of src family kinase activity. Jak3 is found associated with the p85 subunit of P13 kinase in an IL-7-responsive manner in T cells and appears to regulate IL-7-induced P13 kinase activation by mediating tyrosine phosphorylation of the p85 subunit. Specific inhibition of IL- 7-induced Jak kinase activity ablates p85 tyrosine phosphorylation, subsequent P13 kinase activation, and, ultimately, proliferation. The ability to regulate P13 kinase activity indicates a more generalized role for the Jak family than activation of gene transcription via the Stat family in cytokine receptor signal transduction.


1994 ◽  
Vol 72 (06) ◽  
pp. 937-941 ◽  
Author(s):  
Karim Rezaul ◽  
Shigeru Yanagi ◽  
Kiyonao Sada ◽  
Takanobu Taniguchi ◽  
Hirohei Yamamura

SummaryIt has been demonstrated that activation of platelets by platelet-activating factor (PAF) results in a dramatic increase in tyrosine phosphorylation of several cellular proteins. We report here that p72 syk is a potential candidate for the protein-tyrosine phosphorylation following PAF stimulation in porcine platelets. Immunoprecipitation kinase assay revealed that PAF stimulation resulted in a rapid activation of p72 syk which peaked at 10 s. The level of activation was found to be dose dependent and could be completely inhibited by the PAF receptor antagonist, CV3988. Phosphorylation at the tyrosine residues of p72 syk coincided with activation of yllsyk. Pretreatment of platelets with aspirin and apyrase did not affect PAF induced activation of p72 syk .Furthermore, genistein, a potent protein-tyrosine-kinase inhibitor, diminished PAF-induced p72 syk activation and Ca2+ mobilization as well as platelet aggregation. These results suggest that p72 syk may play a critical role in PAF-induced aggregation, possibly through regulation of Ca2+ mobilization.


1992 ◽  
Vol 12 (10) ◽  
pp. 4706-4713
Author(s):  
H Sabe ◽  
M Okada ◽  
H Nakagawa ◽  
H Hanafusa

The protein product of the CT10 virus, p47gag-crk (v-Crk), which contains Src homology region 2 (SH2) and 3 (SH3) domains but lacks a kinase domain, is believed to cause an increase in cellular protein tyrosine phosphorylation. A candidate tyrosine kinase, Csk (C-terminal Src kinase), has been implicated in c-Src Tyr-527 phosphorylation, which negatively regulates the protein tyrosine kinase of pp60c-src (c-Src). To investigate how c-Src kinase activity is regulated in vivo, we first looked at whether v-Crk can activate c-Src kinase. We found that cooverexpression of v-Crk and c-Src caused elevation of c-Src kinase activity, resulting in an increase of tyrosine phosphorylation of cellular proteins and morphological transformation of rat 3Y1 fibroblasts. v-Crk and c-Src complexes were not detected, although v-Crk bound to a variety of tyrosine-phosphorylated proteins in cells overexpressing v-Crk and c-Src. Overexpression of Csk in these transformed cells caused reversion to normal phenotypes and also reduced the level of c-Src kinase activity. However, Csk did not cause reversion of cells transformed by v-Src or c-Src527F, in which Tyr-527 was changed to Phe. These results strongly suggest that Csk acts on Tyr-527 of c-Src and suppresses c-Src kinase activity in vivo. Because Csk can suppress transformation by cooverexpression of v-Crk and c-Src, we suggest that v-Crk causes activation of c-Src in vivo by altering the phosphorylation state of Tyr-527.


1993 ◽  
Vol 13 (2) ◽  
pp. 785-791
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


1993 ◽  
Vol 13 (12) ◽  
pp. 7708-7717
Author(s):  
K V Prasad ◽  
R Kapeller ◽  
O Janssen ◽  
H Repke ◽  
J S Duke-Cohan ◽  
...  

CD4 serves as a receptor for major histocompatibility complex class II antigens and as a receptor for the human immunodeficiency virus type 1 (HIV-1) viral coat protein gp120. It is coupled to the protein-tyrosine kinase p56lck, an interaction necessary for an optimal response of certain T cells to antigen. In addition to the protein-tyrosine kinase domain, p56lck possesses Src homology 2 and 3 (SH2 and SH3) domains as well as a unique N-terminal region. The mechanism by which p56lck generates intracellular signals is unclear, although it has the potential to interact with various downstream molecules. One such downstream target is the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase), which has been found to bind to activated pp60src and receptor-tyrosine kinases. In this study, we verified that PI 3-kinase associates with the CD4:p56lck complex as judged by the presence of PI 3-phosphate generated from anti-CD4 immunoprecipitates and detected by high-pressure liquid chromatographic analysis. However, surprisingly, CD4-p56lck was also found to associate with another lipid kinase, phosphatidylinositol 4-kinase (PI 4-kinase). The level of associated PI 4-kinase was generally higher than PI 3-kinase activity. HIV-1 gp120 and antibody-mediated cross-linking induced a 5- to 10-fold increase in the level of CD4-associated PI 4- and PI 3-kinases. The use of glutathione S-transferase fusion proteins carrying Lck-SH2, Lck-SH3, and Lck-SH2/SH3 domains showed PI 3-kinase binding to the SH3 domain of p56lck, an interaction facilitated by the presence of an adjacent SH2 domain. PI 4-kinase bound to neither the SH2 nor the SH3 domain of p56lck. CD4-p56lck contributes PI 3- and PI 4-kinase to the activation process of T cells and may play a role in HIV-1-induced immune defects.


1996 ◽  
Vol 109 (3) ◽  
pp. 699-704 ◽  
Author(s):  
M. Cervello ◽  
V. Matranga ◽  
P. Durbec ◽  
G. Rougon ◽  
S. Gomez

The glycosyl-phosphatidylinositol (GPI)-anchored F3 molecule, a member of the Ig superfamily made up of Ig and FNIII-like domains, is involved in cell-cell adhesion, neuronal pathfinding and fasciculation. Little is known about the mechanism(s) that governs the F3-mediated cell-cell recognition. In particular, it is not known whether F3 transduces signals across the membrane. Here we show that in F3-transfected CHO cells (1A cells) an increase in tyrosine phosphorylation occurs during F3-mediated aggregation. Moreover, under aggregation conditions F3 immunoprecipitated from 32P-metabolically labeled 1A cells associated with three major phosphorylated proteins. Interestingly, genistein inhibited the F3-mediated aggregation. Increased tyrosine phosphorylation was also observed using antibody-mediated F3-cross-linking. Furthermore, F3 expressed both in 1A cells and in post-natal mouse cerebellum forms non-covalent soluble complexes with protein tyrosine kinase(s). In cerebellum the F3-associated kinase was identified as fyn. By contrast, a truncated F3 protein, expressed in CHO cells, from which all the FN type III repeats have been deleted, does not associate with a kinase. Cross-linking of the F3-truncated form does not induce modulation of tyrosine phosphorylation. Taken together these data demonstrate that F3 is a molecule that transduces signals through both association with protein tyrosine kinase and modulation of protein tyrosine phosphorylation. The presence of FN type III domains is essential for the activation of the intracellular signaling pathway.


1994 ◽  
Vol 14 (5) ◽  
pp. 2862-2870 ◽  
Author(s):  
M Raab ◽  
M Yamamoto ◽  
C E Rudd

CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.


1993 ◽  
Vol 294 (2) ◽  
pp. 339-342 ◽  
Author(s):  
G A Evans ◽  
O M Z Howard ◽  
R Erwin ◽  
W L Farrar

The haematopoietic protein, p95vav, has been shown to be a tyrosine kinase substrate and to have tyrosine kinase-modulated guanine-nucleotide-releasing-factor activity. This implies a function in the control of ras or ras-like proteins. Because ras activation has been shown to be a downstream event following stimulation of the interleukin-2 (IL-2) receptor, we investigated the possibility that vav was involved in IL-2 signal transduction pathways, using human T cells as a model. We found rapid tyrosine phosphorylation of vav in response to IL-2 within 1 min, with maximum increase of phosphorylation of 5-fold occurring by 5 min after treatment in normal human T cells. IL-2 stimulation of the human T-cell line YT and a subclone of the YT cell line (YTlck-) that does not express message for the src-family kinase p56lck also results in a rapid rate of tyrosine phosphorylation of vav of more than 5-fold by 5 min. These results suggest that vav may play an important role in IL-2-stimulated signal transduction and that there is not a strict requirement for the tyrosine kinase p56lck.


Sign in / Sign up

Export Citation Format

Share Document