Dietary milk fat globule membrane improves endurance capacity in mice

2014 ◽  
Vol 307 (8) ◽  
pp. R1009-R1017 ◽  
Author(s):  
Satoshi Haramizu ◽  
Noriyasu Ota ◽  
Atsuko Otsuka ◽  
Kohjiro Hashizume ◽  
Satoshi Sugita ◽  
...  

Milk fat globule membrane (MFGM) comprises carbohydrates, membrane-specific proteins, glycoproteins, phospholipids, and sphingolipids. We evaluated the effects of MFGM consumption over a 12-wk period on endurance capacity and energy metabolism in BALB/c mice. Long-term MFGM intake combined with regular exercise improved endurance capacity, as evidenced by swimming time until fatigue, in a dose-dependent manner. The effect of dietary MFGM plus exercise was accompanied by higher oxygen consumption and lower respiratory quotient, as determined by indirect calorimetry. MFGM intake combined with exercise increased plasma levels of free fatty acids after swimming. After chronic intake of MFGM combined with exercise, the triglyceride content in the gastrocnemius muscle increased significantly. Mice given MFGM combined with exercise had higher mRNA levels of peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc1α) and CPT-1b in the soleus muscle at rest, suggesting that increased lipid metabolism in skeletal muscle contributes, in part, to improved endurance capacity. MFGM treatment with cyclic equibiaxial stretch consisting of 10% elongation at 0.5 Hz with 1 h on and 5 h off increased the Pgc1α mRNA expression of differentiating C2C12 myoblasts in a dose-dependent manner. Supplementation with sphingomyelin increased endurance capacity in mice and Pgc1α mRNA expression in the soleus muscle in vivo and in differentiating myoblasts in vitro. These results indicate that dietary MFGM combined with exercise improves endurance performance via increased lipid metabolism and that sphingomyelin may be one of the components responsible for the beneficial effects of dietary MFGM.

2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Jia ◽  
Rong Zhang ◽  
Zhenbao Zhu ◽  
Lin Shi

Large variations in the bioactivities and composition of milk fat globule membrane (MFGM) proteins were observed between Saanen dairy goat and Holstein bovine at various lactation periods. In the present study, 331, 250, 182, and 248 MFGM proteins were characterized in colostrum and mature milk for the two species by Q-Orbitrap HRMS-based proteomics techniques. KEGG pathway analyses displayed that differentially expressed proteins in colostrum involved in galactose metabolism and an adipogenesis pathway, and the differentially expressed proteins in mature milk associated with lipid metabolism and a PPAR signaling pathway. These results indicated that the types and functions of MFGM proteins in goat and bovine milk were different, and goat milk had a better function of fatty acid metabolism and glucose homeostasis, which can enhance our understanding of MFGM proteins in these two species across different lactation periods, and they provide significant information for the study of lipid metabolism and glycometabolism of goat milk.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


2021 ◽  
pp. 106378
Author(s):  
Iolly Tábata Oliveira Marques ◽  
Fábio Roger Vasconcelos ◽  
Juliana Paula Martins Alves ◽  
Assis Rubens Montenegro ◽  
César Carneiro Linhares Fernandes ◽  
...  

1994 ◽  
Vol 1199 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Naohito Aoki ◽  
Hidenori Kuroda ◽  
Miho Urabe ◽  
Yoshimi Taniguchi ◽  
Takahiro Adachi ◽  
...  

2002 ◽  
Vol 69 (4) ◽  
pp. 555-567 ◽  
Author(s):  
SUNG JE LEE ◽  
JOHN W. SHERBON

The effects of heat treatment and homogenization of whole milk on chemical changes in the milk fat globule membrane (MFGM) were investigated. Heating at 80 °C for 3–18 min caused an incorporation of whey proteins, especially β-lactoglobulin (β-lg), into MFGM, thus increasing the protein content of the membrane and decreasing the lipid. SDS-PAGE showed that membrane glycoproteins, such as PAS-6 and PAS-7, had disappeared or were weakly stained in the gel due to heating of the milk. Heating also decreased free sulphydryl (SH) groups in the MFGM and increased disulphide (SS) groups, suggesting that incorporation of β-lg might be due to association with membrane proteins via disulphide bonds. In contrast, homogenization caused an adsorption of caseins to the MFGM but no binding of whey proteins to the MFGM without heating. Binding of caseins and whey proteins and loss of membrane proteins were not significantly different between milk samples that were homogenized before and after heating. Viscosity of whole milk was increased when milk was treated with both homogenization and heating.


DNA Sequence ◽  
2004 ◽  
Vol 15 (5-6) ◽  
pp. 326-331 ◽  
Author(s):  
T.K. Bhattacharya ◽  
S.S. Misra ◽  
Feroz D. Sheikh ◽  
S. Dayal ◽  
V. Vohra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document